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The scattered light pattern from a biological cell is greatly influenced by the internal structure 

and optical properties of the cell.  This research project examines the relationships between the 

morphological and scattering properties of biological cells through numerical simulations.  The 

mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to 

quantitatively study the effects of a range of cell characteristics on the features of the light 

scattering patterns, and (3) to classify cells based on the features of their light scattering patterns.  

A procedure to create an analytical cell model was developed which extracted structural 

information from the confocal microscopic images of cells and allowed for the alteration of the 

cell structure in a controlled and systematic way.  The influence of cell surface roughness, 

nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light 

scattering patterns was studied through numerical simulations of light scattering using the 

Discrete Dipole Approximation.  It was found that the light scattering intensity in the scattering 

angle range of 25° to 45° responded to changes in the surface fluctuation of the cell and the 

range of 90° to 110° was well suited for characterization of mitochondrial density and nuclear 

size.  A comparison of light scattering pattern analysis methods revealed that the angular 

distribution of the scattered light and Gabor filters were most helpful in differentiating between 



 

 

the cell characteristics.  In addition, a measured increase in the Gabor energy of the light 

scattering patterns in response to an increase in the complexity of the cell models suggested that 

a complex nuclear structure and mitochondria should be included when modeling biological cells 

for light scattering simulations.  Analysis of the scattering pattern features with Gabor filters 

resulted in discrimination of the cell models according to cell surface roughness, nuclear size, 

and mitochondrial volume density and size with over 90% classification accuracy.  This study 

suggested the location of the scattering planes that are most relevant to researchers depending on 

the desired information about the cell and may provide a quantitative approach to cell 

discrimination with practical applications in flow cytometry for the diagnosis of diseases.   
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CHAPTER 1:  INTRODUCTION 

The light scattering pattern from biological cells contains rich information regarding the cell 

structure and its optical properties.  Due to the complexity of the internal structure of the cell, the 

light scattering pattern formed through the interference of the scattering wave fields from various 

components in the cell is rather complicated, and no simple relation can be established between 

individual speckles in the scattering pattern and particular components of the cell [1].  A good 

understanding of the relationship between the morphological and light scattering properties of 

biological cells is critical in obtaining accurate information regarding the physiological condition 

of the cells.  Due to the close correlation between the scattered light and the cell internal 

structure, the scattered light signal has the potential to become a very useful tool for providing 

significant information on the metabolic state of the cells and for the early detection of diseases.  

For this reason, the interaction between light and biological cells has attracted significant 

research efforts over the past century.   

Early studies approximated biological cells as homogeneous spheres or as coated, or 

concentric spheres.  It was found that the forward scattering was mostly influenced by the 

volume of the scatterer and that the presence of a nucleus did not significantly influence the 

forward scatter.  It was also discovered that the internal structure of the cell influenced light 

scattering at larger scattering angles [3, 4, 5].  Several studies also provided some estimation for 

the cell membrane thickness and the size and index of refraction of the cytoplasm and nucleus [6, 

7].   

The understanding of the light-cell interaction improved over the years as smaller structural 

features in biological cells were introduced into the cell models.  Some of the models contained 

various size distributions of spheres and ellipsoids [8], while others used a multilayer cell model 
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to represent various layers in cells, including the nucleus and mitochondria.  The results of these 

studies suggested that the small structures played a major role in the light scattered from a cell 

and that the presence of small organelles significantly increased the scattering intensity for all 

angles, especially for angles above 90° [9].  Additional cell characteristics, such as approximate 

sizes for the various substructures in the cells, were also obtained [10, 11, 8].   

The effects of inhomogeneity in the index of refraction distribution in biological cells have 

also been considered by some of the more recent studies and several different approaches have 

been proposed.  Kalashnikov et al. used modifications of index tomograms, or three-dimensional 

(3D) refractive index maps of cells, to systematically examine the effects of the nucleolus and 

the nucleus on the scattering pattern [12].  Li et al. modeled the fluctuations in the index of 

refraction fluctuations with the Gaussian Random Field model with 3D realizations implemented 

using the turning-band method [13].  This latter approach allowed for the modeling of refractive 

index variations with scales of the same order as those in biological cells.  

More recent light scattering studies have used cell models with higher complexity.  Red 

blood cells were modeled as biconcave disks to investigate the effect of changes in orientation, 

volume and diameter, and each parameter had a noticeable effect on the scattering pattern [14].  

Brock et al. constructed realistic cell models composed of a cell membrane and nucleus using z-

stacks of confocal microscope images from B-cells [15].  Results indicated that the coated sphere 

was a poor model for B-cells for scattering at angles larger than 20° and that the small shape 

features in the realistic model changed the scattering pattern for larger scattering angles [15].   

While many light scattering studies focused on analyzing the azimuthally-averaged angular 

distribution of the scattered light intensity, where only the cell size and some limited information 

regarding the internal structure of the cell could be obtained [16, 17, 18, 19, 20], recent 
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developments have focused on analyzing two-dimensional (2D) diffraction images, which 

contain rich information regarding the cell structure and its optical properties.  Various analysis 

methods have been applied to these images in attempts to extract 3D morphological features 

from cells.  Fourier analysis of the scattering patterns was suggested to obtain information about 

the distribution of mitochondria as well as the size of biological cells [21, 22].  A label-free 

speckle analysis technique was developed to discriminate between an aggregate distribution of 

mitochondria present in normal hematopoietic cells and a randomly-distributed diffuse 

distribution present in leukemic cells [23].  Other texture analysis techniques such as Haralick 

features [24] and Laws’ energy measures [25] were used to analyze light scattering patterns and 

differentiate between perinuclear, diffuse, peripheral, and aggregate distributions from simple, 

spherical cell models [26, 27].   

While the results mentioned above have shown promise of quantitative discrimination of 

cells based on various morphological characteristics, the methods have not been capable of 

detecting variations in a range of cell properties such as the number and volume density of 

mitochondria and have only been applied to simplified models with spherical or ellipsoidal 

mitochondria [23].  The main goal of this research is to utilize a realistic biological cell model in 

numerical light scattering simulations to quantitatively study the effects of a range of cell 

morphological characteristics on the light scattering patterns and to classify the patterns based on 

these characteristics. 

Since small morphological changes in cells affect how light scatters from the cells, accurate 

modeling of biological cells is important for light scattering simulations.  The first objective of 

this dissertation research is to develop a method to create an analytical 3D model of biological 

cells which is accurate and practical for light scattering simulations.  While simple biological cell 
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models have contributed greatly to the understanding of the light-cell interaction, they do not 

allow much flexibility for a systematic study of the effect of structural features of a cell on the 

light scattering pattern.  The cell model proposed in this study is based on the literature and on 

the structural information extracted from stacks of confocal microscopy images of biological 

cells.  It is very flexible and easily allows for changes in cell surface shape, nuclear 

substructures, and mitochondrial properties.  

The second objective is to measure the changes in the light scattering properties of the cell 

models in response to systematic variation of cell morphological properties.  Through this 

objective, we determine the parts of the light scattering patterns which provide the most pertinent 

information about the cells, discover the methods most suitable for the analysis of light scattering 

patterns, and demonstrate the need for realistic cell modeling in light scattering simulations. 

The third objective is to classify the scattering patterns from the biological cell models 

according to various morphological characteristics.  This is achieved by analyzing the scattering 

patterns with Gabor filters and using discriminant analysis to group the images.  Results of this 

study can provide guidance to experimentalists by suggesting the ideal number and position of 

detectors in flow cytometry measurements depending on the desired information about the 

scatterer.   

The remainder of this document is organized as follows:  An overview of cell morphology 

and its connection to cell physiology is presented in Chapter 2.  A physical description of light 

scattering is presented in Chapter 3, and a description and validation of the method used to 

simulate light scattering cells is provided in Chapter 4.  The techniques used to analyze and 

classify the light scattering patterns are then introduced in Chapter 5.  The final chapters present 

the results from this study.  The procedure and the models created to represent biological cells 
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are described in Chapter 6.  The comparison of the light scattering pattern analysis methods and 

efforts to correlate the morphology and light scattering patterns of biological cells are provided 

in Chapters 7-8.  The classification of the light scattering patterns based on the morphological 

characteristics of the cells is presented in Chapter 9.  Finally, Chapter 10 summarizes the 

research and suggests future directions for this research. 



CHAPTER 2:  CELL MORPHOLOGY  

This chapter provides an overview of the optical and structural properties of biological cells with 

an emphasis on the characteristics of lymphocytes.  Lymphocytes are white blood cells found in 

the immune system that can vary in size from 4.8 to 12.0 m [11, 28].  They produce antibodies 

and other molecules to rid the cell of invaders and have the potential to be useful markers for the 

identification and diagnosis of various diseases. 

2.1. Index of refraction 

Biological cells are composed of cytoplasm and various organelles such as a nucleus and 

mitochondria, resulting in an inhomogeneous spatial distribution in their refractive index as well 

as in their dielectric properties.  A wide range of values for refractive indices of the cell 

components can be found in the literature.  The cell membranes, composed mostly of lipids and 

proteins, have refractive indexes in the range of 1.46 to 1.54; the index of refraction of the 

cytoplasm varies from 1.35 to 1.37; the refractive index of the nucleus varies from 1.38 to 1.41; 

and that of the mitochondria ranges from 1.38 to 1.41 [29, 30, 31, 32]. 

2.2. Cell surface 

The cell surfaces of lymphocytes have varying degrees of roughness due to ruffles and folds on 

the surface [28].  Protrusive structures called microvilli with lengths from 0.3 to 0.4 m can be 

seen on the surface of lymphocytes with electron microscopy [33].  The roughness of the cell 

surface also depends on the cell’s environment and physiological condition.  One study showed 

that lymphocytes had folded membranes when placed in isotonic and hypertonic solutions, while 

the membranes were much smoother and the cells had a nearly spherical shape in hypotonic 
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solutions [34].  Also, after coculture with a leukemia cell line, lymphocytes appeared much 

smoother than normal, possibly due to damage to the surface or to changes in the composition of 

the cell membrane.  Before coculture, the average roughness of lymphocytes was approximately 

0.35 m, while after coculture it was 0.1 m [35].  In addition, percentages of smooth and non-

smooth lymphocytes differed in individuals with hepatitis B and C viruses, tick-borne 

encephalitis, and herpes simplex as compared to healthy individuals [32]. 

2.3. Nucleus 

The nucleus is the cell’s most prominent organelle and contains most of the cell’s genetic 

material.  It is surrounded by a thin nuclear envelope (~0.1 m) which separates it from the 

cytoplasm.  A wide range of sizes for the nucleus of lymphocytes has been reported, varying 

from 4.1 to 8.8 m, although the ratio of nucleus to cell size tends to stay constant [28].  One 

study found that there was a positive correlation between the nucleus and cell size and suggested 

that the nucleus made up approximately 55% of the cell’s volume for lymphocytes [28].  The 

same study also found that in lymphocytes, the nucleus had an ellipsoidal shape and was off-

centered in the cell by about 0.3 m [28].  One of the main structures in the nucleus is the 

nucleolus, which transcribes ribosomal RNA.  The nucleus contains 1-3 nucleoli, which are 

denser than the nucleus and have sizes in the range 0.5 to 1.4 m [28].   

Changes in nuclear morphology are useful indicators for diagnosing pathological conditions 

in cells.  Fluctuations in the refractive index of the nucleus have been associated with intestinal 

carcinogenesis and mitosis [10, 36].  Other nuclear morphological changes, including nuclear 

enlargement, changes in surface shape, and increased number of nucleoli per unit area, have been 

linked to specific cancer types and can assist in the diagnosis of cancer [10, 37, 31]. 
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Interestingly, a study reported that in lymphocytes of autistic children, the nuclei appeared 

reduced in size; electron micrographs showed nuclei to be as small as 30% of the cell’s volume 

[38]. 

2.4. Mitochondria 

Mitochondria are present in virtually all animal cells and produce most of the energy needs of a 

cell.  They perform a host of cellular functions and play a central role in differentiation, aging, 

and apoptosis [39, 40, 41].  Each mitochondrion is bounded by two membranes.  The outer 

membrane encloses the entire contents of the mitochondrion, while the inner membrane has a 

much greater surface area and forms a series of folds or invaginations [39].  Proteins inside 

mitochondria cause fission and fusion of the organelle and control mitochondrial morphology 

[42].  Defects in mitochondrial function are implicated in a number of diseases such as cancer, 

bipolar disorder, Parkinson’s and Alzheimer’s diseases [41, 42, 43].  Because these defects are 

manifested through changes in mitochondrial volume density, shape, size, and spatial 

distribution, these parameters and their clinical relevance are examined below. 

The number of mitochondria in cells varies according to cell type and cell health.  Some 

cells, such as some sperm and yeast cells, have only a few mitochondria.  Other cells, such as 

skeletal muscle and liver cells, may contain thousands of mitochondria [44].  While the 

mitochondrial volume density for most cells ranges from 15-22% [44], several studies indicate 

that the density for lymphocytes is smaller.  The average number of mitochondria in 

lymphocytes can be as low as 3.2 mitochondria per cell [32], but the volume density has also 

been measured to be as high as 9.6% [45].   

For any type of cell, the mitochondrial volume density is also affected by the physiological 
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condition of the cells.  For example, increased metabolic activity within a cell tends to generate 

increased numbers of mitochondria [42].  On the contrary, during some processes such as 

pyknosis or ballooning that happen during apoptosis, the number of mitochondria can be reduced 

[42].  Several studies have related differences in the volume density of mitochondria to specific 

medical conditions.  In one study, low-grade benign tumors contained high numbers of 

mitochondria, while high-grade tumors (tumors with a high proliferation index) had fewer 

mitochondria [42].  Another study analyzing lymphocytes from schizophrenic patients showed 

that the volume density of mitochondria in large activated lymphocytes was significantly lower 

in the schizophrenic patients as compared to the control group [45].   

Besides varying in volume density, mitochondria can also be found in many forms.  

Although mitochondria are typically portrayed as having tubular shapes, they can attain various 

shapes and form large networks in response to cellular processes and perturbations.  During cell 

division and apoptosis, mitochondria are fragmented and form small ovoid or round structures, 

while during cell starvation or degradation, mitochondria can elongate and be spared from death 

[42, 46, 47].  Also, dysfunctional mitochondria have been observed to lose their network 

structure and become more round compared to normal mitochondria [42].  A study investigating 

the role of mitochondria in the resistance of tumor cells to anticancer drugs showed that 

mitochondria in drug-resistant cells displayed a star-lobed morphology in contrast to the 

filamentous, polymorphic structures of those in drug-sensitive cells [48].  Another study 

observed mitochondria changing from a tubular shape to a donut and a blob form in response to 

increased oxidative stress [46]. 

Likewise, the size of mitochondria also varies.  The length has been reported to range from 

0.2 m to more than 2.0 m [41, 42].  Size variations occur as mitochondria shrink and swell as 
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a response to their environment, and various reagents cause changes in mitochondrial volume 

during ATP synthesis [49].  The enlargement of mitochondria has been attributed to a wide range 

of abnormal conditions, such as ischemia (restriction in blood supply to tissue) and deficiencies 

of riboflavin or essential fatty acids [44].  For example, a study showed enlarged, swollen 

mitochondria in peripheral blood lymphocytes from iron-deficient patients [50].  It has also been 

reported that the mean diameter of mitochondria in cancer cells is up to 15% larger than in 

normal cells [42].  Sometimes, however, smaller mitochondria are found in patients with various 

disorders and are seen interspersed with larger mitochondria in normal cells [44, 41, 39].  

As mitochondria change in volume density, shape and size in order to meet the different 

functional needs of the cell, it is not surprising that they are also distributed in the cells in various 

spatial conformations.  Some distributions that have been documented are the diffuse (spread out 

in the cytoplasm), the peripheral (located near the cell periphery), and the perinuclear (located 

near the nucleus).  Mitochondria tend to locate where the energy is required, so changes in the 

spatial distributions reflect changes in the metabolic state of the cell and have been linked to a 

number of cell physiological processes and diseases [51, 43].  In one study, cultured cancer cells 

sensitive to chemotherapeutic drugs displayed aggregation to the nucleus, while in drug-resistant 

strains, they displayed increased peripheral activity [48].  In a study where the CO2 content of the 

environment was systematically increased, perinuclear mitochondria were found in the low CO2 

content environment, while diffuse mitochondria were found in the high CO2 environment [51].  

However, it is unclear where the mitochondria are located during normal cell function; both the 

perinuclear and diffuse distributions have been identified during a cell’s normal life, while the 

perinuclear distribution has also been identified for bipolar disorder cells and the diffuse 

distribution has also been found in cancer cells [42, 41, 10].  The confocal microscopy images 
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presented in Figure 2.1(a-c) provide examples of diffuse, peripheral, and perinuclear 

mitochondrial distributions, respectively.  These images are from Ramos and Jurkat cells, which 

are B and T lymphocyte cells, respectively. 

 

 

Figure 2.1: Examples of diffuse, peripheral, and perinuclear mitochondrial distributions in cells.  

(a) Diffuse distribution in a Ramos cell; (b) Peripheral distribution in a Jurkat cell; (c) 

Perinuclear distribution in a Jurkat cell. The plasma membrane is stained with green dye and the 

nucleus with red dye. Confocal images courtesy of Dr. Xin-Hua Hu. 



CHAPTER 3:  LIGHT SCATTERING THEORY 

The scattering of light occurs when an electromagnetic (EM) wave encounters a particle with 

variations in its EM properties.  Through interactions with the molecules in the heterogeneous 

particle, the EM wave induces oscillating dipole moments, resulting in the scattered light.  The 

scattered field is dependent on the optical properties of the scatterer and it is thus of great interest 

to be able to calculate this field in order to learn about the scatterer.  For particles much smaller 

than the wavelength, the Rayleigh theory can be used to solve for the scattered field.  In this 

approximation, the scattering particles are treated as electric dipoles, resulting in the scattering 

cross section varying inversely with the fourth power of the wavelength.  For particles much 

larger than the wavelength, geometrical optics, or ray optics, can be used [52].  Ray optics treats 

light as a collection of rays that travel in straight lines and bend when they pass through or reflect 

from surfaces, but neglects diffraction and polarization.  For particles whose size are similar to 

the wavelength, the method used to solve the light scattering problem must account for the wave 

nature of light and therefore must be based on Maxwell’s equations [53].  In this section, the 

scattering problem is formulated and solutions for the scattered field are discussed.    

3.1. Solving for the scattered field   

The light scattered from a single particle of arbitrary shape and size depends on the incident light 

and the scattering particle.  Figure 3.1 illustrates scattering by an arbitrary particle.  The direction 

of scattering ( ˆ
re ), i.e., the direction from the particle to the point of interest, is characterized by 

the angle θ which it makes with the direction of propagation of the incident light (
îe ) and the 

azimuth angle φ.  The unit vectors  ˆ
re  and ˆ

ze  form the scattering plane.   
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Figure 3.1: Configuration of light scattering from an arbitrary particle.  The incident field is a 

plane EM wave. 

 

The incident beam of light is represented by a harmonically oscillating plane EM wave that 

propagates in a vacuum without a change in its intensity or polarization state.  This wave is 

described by [54]:   

 
0

0

( , ) exp( )

( , ) exp( )

i

i

E r t E ik r i t

H r t H ik r i t





  

  
 (3.1)  
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where iE  is the incident electric field, iH  is the incident magnetic field, 0E and 0H are constant 

vectors,  2k 


  is the wavenumber,   is the wavelength of the incident light,   is the 

frequency, and t is time.  

The incident field propagates unchanged through a medium that is unbounded, 

homogeneous, linear, isotropic, and nonabsorbing [55].  However, the presence of an object with 

a refractive index different from that of the surrounding medium changes the EM field.  The EM 

field scattered by the object, ( sE , sH ), is the difference of the total field in the presence of the 

object, ( E , H ), and the original field, ( iE , iH ), that would exist in the absence of the object 

[54]: 

 
s i

s i

E E E

H H H

 

 
. (3.2) 

The total fields must satisfy Maxwell’s equations [56]:  

 

0

0

D

B

B
E

t

D
H

t

 

  


  




 



, (3.3) 

where  D r E  is the electric displacement,  r is the electric permittivity with spatial 

variation, 0B H is the magnetic induction, and
0 is the magnetic permeability of free space.  

From Maxwell’s equations, it is straightforward to obtain the inhomogeneous Helmholtz wave 

equation for E  [56]: 
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, (3.4)  

where 
2 2

0 ok    and
o is the permittivity of free space.  The solution for E has the form [56]: 

 

       

 

3, , , , ,

, ,

inc
V

ik r r
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e
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   




   

 



, (3.5)  

where V is the region occupied by the scattering particle and G is the Green’s function.  The 

second term is the scattered field, and in the far field approximation it becomes [56]: 

     ˆ 3, ,
ikr

ikr r

s
V

e
E r f r e d r

r
 

    . (3.6) 

In the equation above, the function  ,f r   is integrated over the volume of the scatterer.  Since 

 ,f r   is a function of electric field according to Eq. (3.4), it is apparent that the internal field 

must be known in order to solve for the scattered field. 

For a selective group of highly symmetric scatterers, analytical solutions for the scattering 

field may be obtained using methods such as Mie theory and the T-matrix method.  Both Mie 

theory and the T-matrix method solve Maxwell’s equations by expanding the fields with 

spherical harmonics.  Mie theory provides a solution for homogeneous spheres or concentric 

homogeneous spheres [52] while the T-matrix method can be applied to nonspherical particles 

with rotational symmetry such as spheroids [57].  Although these methods are fast and accurate, 

they are not adequate to describe light scattering from biological cells, which are asymmetric and 
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have an inhomogeneous spatial distribution in their refractive index [58].  To simulate light 

scattering from biological cells, numerical methods rather than analytical methods must be 

employed.   

A popular numerical method is the Finite-Difference Time-Domain (FDTD) technique 

introduced by Yee in 1966.  The FDTD technique discretizes Maxwell’s time-dependent curl 

equations by using central-difference approximations for the space and time partial derivatives of 

the electric and magnetic fields [59].  The scattering particle is placed in a finite computational 

domain and the technique uses absorbing boundary conditions to model scattering in open space 

and a marching-in-time procedure to track the evolution of the fields from their initial values 

[60].  The field values at the previous and current time steps, specified at each grid point, are 

used to calculate the values at the next time step, so the method avoids solving a large system of 

linear equations and the memory storage requirement is proportional to the total number of grid 

points [60].  The FDTD method only solves for the near field, so a near-zone to far-zone 

transformation must be invoked to obtain the far field in the frequency domain.  Because it is 

conceptually simple and easy to implement, the FDTD method is a very popular method [60]. 

Another popular numerical method is the discrete dipole approximation (DDA), proposed by 

Purcell and Pennypacker in 1973.  This method discretizes the volume-integral equation for the 

electric field in the frequency domain [52].  It is based on computing the mutual interactions of N 

dipoles on a 3D lattice and requires the solution of a system of 3N complex linear equations [58].  

Although the DDA method has not been used as extensively as the FDTD method to simulate 

light scattering from cells, a systematic study of two implementations of the methods showed 

that the DDA performance is superior for scatterers with relatively large size parameters [62].  
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For this reason, the DDA method is used in this project.  A more detailed description of the DDA 

method is provided in §4.1.   

3.2. Polarization properties of the scattered field 

The scattered field depends not only on the intensity but also on the polarization of the incident 

field.  As shown in Figure 3.2, the incident and scattered electric fields can be expressed as 

linearly polarized waves with components parallel ( E ) and perpendicular ( E
) to the scattering 

plane: 

 
ˆ ˆ

ˆ ˆ

i i i i i

s s s s s

E E e E e

E E e E e

 

 

 

 
, (3.7)  

where, ê and ê are orthonormal basis vectors for the scattered and incident fields.  As shown in 

Eq. (3.7), the amplitude of the scattered field is a linear function of the amplitude of the incident 

field.  This relation is more conveniently expressed in matrix form [54]: 

 

( )
2 3

4 1

ik r z
s i

is

E ES Se

ES SikrE





    
    

    
, (3.8)  

where S is the amplitude scattering matrix. 
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Figure 3.2: The polarization states of the incident and scattered field, measured relative to the 

scattering plane.  

 

The incident and scattered waves can also be described with the real-valued Stokes 

parameters, which can be calculated directly from experimental measurements.  These 

parameters are I, Q, U and V, where I is the total intensity (flow of energy per unit area) of 

radiation, Q is polarization at 0  or 90  to the scattering plane, U is polarization at 45 to the 

scattering plane, and V is left or right circular polarization [63].  The Stokes vectors are related to 

the electric field vectors: 
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, (3.9)  
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where the brackets indicate time averages over time periods longer than the period of the wave.  

The incident Stokes vector is related to the transmitted vector with the following relation [54]: 

 

11 12 13 14

21 22 23 24

2 2

31 32 33 34

41 42 43 44

1

s i

s i

s i

s i

I S S S S I

Q S S S S Q

U S S S S Uk r

V S S S S V

    
    
    
    
    
    

, (3.10)  

where i and s stand for the incident and the scattered light, respectively, k is the wavenumber, r is 

the distance from the scatterer, and ijS , the elements of the Mueller matrix, are a function of the 

scattering angle   [64].  The Mueller matrix elements contain information about the size, shape, 

structure, and optical properties of the scatterer.  For example, 
11S  is proportional to the intensity 

of the scattered light.  The intensity of forward scattering ( 0 ) depends mostly on the size of 

the cell.  For slightly larger angles and backward scattering ( 180  ) the nucleus has a greater 

role, while small organelles are responsible for scattering at side scattering angles ( 90 ) [65].  

12S  normalized to 
11S  represents the degree of linear polarization of the scattered light for 

polarized incident light [66].  The 
34S  element indicates how effectively the scatterer acts like a 

quarter wave plate because it connects 45  linear polarization with circular polarization, and it is 

also very sensitive to the size of the particle.  For a single particle, only seven Mueller matrix 

elements are independent [67].  The number of non-zero elements and the degree of symmetry in 

the matrix depends on the symmetry of the scattering particle [68]. 

Since the light intensity is directly related to the Mueller matrix, the polarization properties 

of a particle can be characterized by its Mueller matrix elements.  One can measure the Mueller 

matrix elements by illuminating a particle and analyzing the scattered light with various 



20 

 

combinations of linear polarizer orientations.  For the incident beam, the linear polarizer can 

have a horizontal, vertical, or 45° orientation.  For each of these three options, the scattered beam 

can have polarizations parallel or perpendicular to the scattering plane.  The components of the 

Mueller matrix are related to the various polarization states of the incident and scattered light by: 
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, (3.11) 

where the subscripts of I on the numerator indicate the polarization of the incident and scattered 

light, respectively.  Thus, several experimental measurements must be made in order to 

determine all of the Mueller matrix elements and the polarization properties of a sample [68]. 

3.3. Optical properties of the scatterer 

There are several measurable optical properties of the scatterer that can be obtained once the 

scattered field is known.  The anisotropy factor and scattering cross sections can be calculated.  

The total amount of scattered light is described by the scattering cross section 
scaC which is the 
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surface area onto which the scattered energy is incident upon, and can be expressed as a product 

of the scattering efficiency and the geometrical cross section of the particle [64]: 

 112 (4 )

1
scaC S d

k 
  . (3.12)  

The absorption cross section 
absC represents the area of the energy absorbed by the particle, and 

the extinction cross section corresponds to the energy removed from the original beam [67]: 

   2

4
Re 0extC S

k


 , (3.13)  

where S (0) is an element from Eq. (3.8).  By conservation of energy, we have [31]: 

 
ext sca absC C C  . (3.14)  

The cross sections depend on both the orientation of the particle and the state of polarization of 

the incident light [67].  The anisotropy factor represents the forward-weightiness of scattering 

[69].  A value of 1 for the anisotropy factor indicates that all radiation is scattered in the forward 

direction, the value is 0 when the flux of scattered energy is equal in forward and backward 

hemispheres, and -1 for backward scattering [70].   

 

 



CHAPTER 4:  Light scattering simulations 

The DDA is a powerful method to simulate light scattering from particles with large size 

parameters.  In this research, the DDA method is used for all light scattering simulations.  The 

first section introduces the physics of the DDA method.  The second section discusses the 

implementation of the DDA method that is used for this study, ADDA.  The final section 

examines the errors associated with ADDA for light scattering simulations for particles of size 

parameter similar to biological cells.     

4.1. Discrete Dipole Approximation  

The basic idea behind the DDA method is to divide a dielectric scatterer into N small volumes 

(called dipoles) which become polarizable.  The N dipoles make up a simple cubic lattice of 

spacing 
0 /10d   and they are each exposed to the incident field as well as the field due to all 

the other dipoles.  The electric field at each site i is iE and the oscillating dipole moment is [71]: 

 i iP E , (4.1)  

with complex polarizability  .  Purcell and Pennypacker assigned the Clausius-Mossotti 

polarizability to each dipole:  

 
33 1

4 2

CM d 


 





. (4.2)  

where  is the dielectric constant.  However, as mentioned below, various radiative correction to 

the Clausius-Mossotti polarizability have been suggested.  
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Each dipole contributes an electric field at the site i given by the sum of the incident field and 

the field due to all the other dipoles [71]:  

  
 

 2 2

3 2

1exp( )
3

ijij

i inc ij j ij j ij ij ij j

j i ij ij

ikrikr
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r r

 
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  
 , (4.3)  

where ijr is a vector pointing from jr  to 
ir and 

ij i jr r r  .  The second term is often written as 

ij j

i j

A P


 and the matrix 
1

ii iA   so that Eq. (4.3) becomes a single matrix equation [71]: 

 incAP E , (4.4)  

where A  is a 3 3N N matrix and P and incE  are 3 1N  vectors.  The scattering problem is 

reduced to finding the polarization that satisfies the system of equations shown in Eq. (4.4). 

To solve for the polarization, Purcell and Penny Packer used an iterative method.  Let 
( )l

jP

denote the value assigned to jP  after the lth iteration, then [71]: 

  ( 1) ( 1) ( )1l l l

i i iP E P     , (4.5)  

where   is a numerical factor set to 0.5 to improve convergence.  Iteration begins by setting

(0) 0iP  .  The computing time is proportional to 2N and convergence is slower for larger values 

of   and 
2 er


, where the equivalent radius  

1/3
3 / 4er N   [71]. 
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4.2. ADDA  

There are several numerical implementations of the DDA method, the most popular being the 

DDSCAT and ADDA codes.  The various implementations of DDA differ in their discretization 

of the scatterer, their assignment of the polarizability for each dipole, and in the convergence 

criteria used for the iteration in the solution for the polarization.  DDSCAT is a FORTRAN 

implementation of DDA made publicly available by Draine and Flatau in 1994 [72].  ADDA [73] 

is a C implementation of the DDA method developed by Yurkin and Hoekstra which can run on 

multiple processors using Message Passing Interface (MPI).  Since its origin in Amsterdam in 

1990, it has evolved into an open-source international project.  Due to its accessibility and ability 

to simulate light scattering from particles with large size parameters, the ADDA implementation 

was used in all of our light scattering simulations. 

The DDA method is very flexible with regards to the geometry of the scatterer, being limited 

only by the need to use a small dipole size d compared to the scatterer and the wavelength.  

ADDA uses the criteria [73]: 

 /10d m , (4.6)  

where m is the refractive index of the scatterer and satisfies [73]: 

 1 2m   (4.7) 

These requirements, based on simulations for spheres with size parameters smaller than 10, are 

expected to produce maximum errors in 
11S  on the order of 20-30% when compared to results of 

Mie theory [73].    



25 

 

The different implementations of DDA use different radiative reaction corrections to the 

Clausius-Mossotti polarizability.  ADDA uses the lattice dispersion relation (LDR) correction as 

the polarizability option [73]: 
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where 
CM is given in Eq. (4.2).  This correction is based on finding the polarizability which 

produces the same dispersion relation for an infinite lattice of polarizable points as for a 

continuum of refractive index  m   [72].   

There are various iterative methods used for the solution of the system of linear equations in 

Eq. (4.4) besides the method presented in the previous section.  ADDA offers several iterative 

solvers, the default of which is the quasi-minimal residual method [74].  The default stopping 

criterion of the iterative method in ADDA is that the relative norm of the residual must be 
510  

[73]. 

4.3. Consideration of errors in ADDA 

When simulating light scattering with a numerical method such as DDA, there are discretization 

errors and shape errors due to representing particles with cubical dipoles.  In order to minimize the 

errors, it is necessary to choose an adequate resolution for the scatterer, specified by the number of 

dipoles per wavelength (dpl).  The common approach is to choose the dpl based on a comparison of 

ADDA results to those of Mie theory.  Several tests have already been carried out for spheres with 
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various size parameters and refractive indices [62, 73].  In these tests, the accuracy criteria for 
11S  

was for the RMS relative error of 
11S  over the whole range of   to be less than 25%.  It was 

shown that large dpl were required for particles with a relative index of refraction m close to one, 

but the tests were not carried out for the refractive index used in our studies.  

We carried out similar simulations in order to determine the lowest dpl suitable for ADDA 

simulations of light scattering from spheres with properties similar to biological cells.  We simulated 

light scattering by homogeneous spheres with 5r m  and 1.03729m   using Mie theory and 

ADDA.  A plane wave with  =1.0m was assumed for the incident light.  With ADDA, the 

simulations used a range of dpl from 4 26 .  The relative error was computed for 
11S  while the 

absolute error was computed for 
12S , 

33S , and 
34S , which were all normalized by 

11S .   

In Figures 4.1-4.4, the Mueller matrix elements calculated with ADDA using dpl equal to 4, 8, 

10, and 26 are presented and compared with exact results of Mie theory.  The errors are much 

more pronounced in the larger scattering angles and in the deep minima, similar to the results in 

Ref. [73].  For 
11S  in the angular range that our studies are concerned with, mostly 110  , the 

RMS relative errors are 149.2%, 16.4%, 6.1% and 0.9%, and the maximum relative errors are 

1134.6%, 111.2%, 30.6% and 3.1%.  Although larger dpl values resulted in smaller errors, the errors 

associated with a dpl equal to 10 were deemed acceptable.  In addition, the large errors seen in 

Figures 4.1-4.4 are believed to be mostly due to shape errors and they are expected to be smaller for 

rough particles such as biological cells. 

To test the effect of increasing the resolution of rough particles on the light scattering pattern, we 

also simulated light scattering from a sample Gaussian random sphere [see §6.2].  The parameters 

used for the Gaussian sphere were 2.53  , 0.064  , 
min 2l  , and 

max 50l  .  Since exact results 
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from this nonspherical scatterer are not available, the result obtained by ADDA with a dpl equal to 

24 was used as a reference.  The results for 
11S  are presented in  

Figure 4.5 comparing a dpl equal to 4, 6, 8, and 10 to a dpl equal to 24.  It can be seen that a 

dpl equal to 10 yields results much closer to the reference, with a RMS relative error of 28.9%  

over the whole range of  .    
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Figure 4.1: Comparison of 
11S  calculated by Mie theory and ADDA for a sphere of 5.0r m  

and 1.04m  . (a) dpl=4, (c) dpl=8, (e) dpl=10, and (g) dpl=26.  The relative errors are shown in 

(b), (d), (f), and (h), respectively. 

(a) 
(b) 

(c) (d) 

(e) (f) 

(g) 
(h) 
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Figure 4.2: Comparison of 
12 11S S  calculated by Mie theory and ADDA for a sphere of 

5.0r m  and 1.04m  . (a) dpl=4, (c) dpl=8, (e) dpl=10, and (g) dpl=26.  The absolute errors 

are shown in (b), (d), (f), and (h), respectively. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure 4.3: Comparison of 
33 11S S  calculated by Mie theory and ADDA for a sphere of 

5.0r m  and 1.04m  . (a) dpl=4, (c) dpl=8, (e) dpl=10, and (g) dpl=26. The absolute errors 

are shown in (b), (d), (f), and (h), respectively. 

(a) 
(b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure 4.4: Comparison of 
34 11S S  calculated by Mie theory and ADDA for a sphere of 

5.0r m  and 1.04m  . (a) dpl=4, (c) dpl=8, (e) dpl=10, and (g) dpl=26. The absolute errors 

are shown in (b), (d), (f), and (h), respectively. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure 4.5: Comparison of 
11S  calculated by ADDA with dpl=24 and

11S  calculated by ADDA 

with various dpl for a Gaussian sphere of 5.0r m  and 1.04m  . (a) dpl=4, (c) dpl=6, (e) 

dpl=8, and (g) dpl=10. The relative errors are shown in (b), (d), (f), and (h), respectively. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 



CHAPTER 5:  LIGHT SCATTERING PATTERN ANALYSIS AND CLASSIFICATION 

Analysis of the light scattering patterns from biological cells with texture analysis methods can 

provide information regarding the cell structure and its optical properties.  Texture is one of the 

most important properties of images that has been studied at length over the past forty years for 

the purpose of content-based image retrieval, or grouping images based on certain 

characteristics.  The first three sections describe three common image texture analysis methods: 

the Haralick features, Laws energy measures, and Gabor filters.  The last section provides a 

description of discriminant analysis, a method used in multivariate analysis for classification 

purposes.   

5.1. Haralick features  

Haralick et al. were major contributors in defining textural features used to differentiate between 

images [24].  The fourteen Haralick texture features provide information such as homogeneity, 

contrast, and structure of the image.  They are derived from co-occurrence matrices, which 

describe the frequencies of certain gray tones appearing in a specified spatial relationship in an 

image.   

For an image of n gray tone values, the co-occurrence matrix is an nxn matrix whose values 

pij stand for the number of times a pixel with value i is found within a certain distance d to a 

pixel with value j.  The distance between pixels can be defined horizontally, vertically, or 

diagonally ( = 0 , 90 , 45 , and 135 ), resulting in four co-occurrence matrices that can be 

computed for a specified distance between pixels [24].  A distance 1d   corresponds to the 

nearest neighbor to a pixel, as shown in Figure 5.1(a) for the four angles.  For example, consider 

the image in Figure 5.1(b) that has four gray level values, ranging from 0 to 3.  The co-
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occurrence matrix with 1d  and 45   is a 4x4 matrix, shown in Figure 5.1(c), where the first 

row and column are shown to represent the gray level values of the original image.  Thus, the top 

left value of this matrix corresponds to the six instances of two pixels each with value 0 being 

diagonal ( 45  ) nearest neighbors.  The co-occurrence matrix is often normalized by the total 

number of pairs used in the matrix so that it approximates the probability densities of co-

occurring gray levels [75].  The resulting co-occurrence matrix is shown in Figure 5.1(d).  The 

four matrices computed (for each angle  ) are often averaged to make the method rotationally 

invariant.  It is from this final matrix that the fourteen Haralick textural features are extracted.  

For a list of the fourteen Haralick features, the reader is referred to Ref. [24]. 

 

 

Figure 5.1: Calculation of the co-occurrence matrix. (a) The four angles for which the distance 

between pixels can be computed (clockwise from top left,  = 0 , 90 , 45 , and 135 ). (b) A 

sample image with four gray level values. (c) The co-occurrence matrix with 1d  and 45 
for the image in (b).  (d) The normalized co-occurrence matrix. 

 

Certain features have a clear physical meaning.  For example, the angular second moment 

measures the homogeneity of the image.  In a homogeneous image, there are very few dominant 

gray-tone transitions.  Thus, the co-occurrence matrix for this image will consist of a few entries 

of large magnitude.  On the other hand, a less homogeneous image with various types of 

transitions between pixels will result in a matrix with a large number of smaller entries, resulting 

(c) (b) (d) (a) 
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in a smaller angular second moment value [24].  The contrast is a difference moment of the 

matrix and measures the amount of local variations present in an image.  An image with a large 

amount of local variation has a higher contrast value.  The correlation measures gray-tone linear-

dependencies in the image.  An image consisting of mostly constant gray-tone values with some 

noise will have a lower correlation value than image displaying linear structure [24].  

5.2. Laws measures  

The Laws energy measures are derived from 2D filter masks and have various functions such as 

detecting edges, spots, and ripples in an image.  The Laws filter masks are convolutions of 

specific vectors of orders three, five, or seven.  The set of one-dimensional vectors of order three 

is displayed in Figure 5.2 (a).  The vectors within a set are convoluted with each other to form 

sets of 9, 25, or 49 independent 2D filter masks.  The convolution can be considered a cross 

product or vector multiplication operation.  An illustration of the convolution of the E3 and L3 

vectors resulting in the E3L3 filter mask is shown in Figure 5.2 (b).   

 
 

Figure 5.2: Laws filter masks.  (a) The set of Laws vectors of order three. (b) The convolution of 

E3 and L3 vectors.  (c) Filtering an image with the E3L3 Laws filter mask.  

(a) (b) 

(c) 
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The first step in extracting textural information using Laws masks is to filter an image using 

each 2D filter.  Each pixel in the filtered image is equal to the sum of the original pixel and its 

surrounding pixels each multiplied by the corresponding filter values.  An example of an image 

filtered with the E3L3 filter mask is illustrated in Figure 5.2(c).  Once a filtered image is 

obtained, the absolute value in local neighborhoods (~15 pixels) around each pixel of the filtered 

image is summed to yield a set of 25 texture energy measures (TEM).  This is represented by the 

following equation: 

    
7 7

7 7

, ,
i j

TEM x y I x i y j
 

   . (5.1) 

The energy measures are often normalized for contrast with the L5L5 TEM image, which is not 

used further in the analysis.  To extract texture information from the filtered image, the variance 

or standard deviation alone is sufficient [25].     

Like the Haralick features, each Laws mask serves a particular purpose.  The vectors in each 

set are named using mnemonics which give some indication of the function of each mask: Level, 

Edge, Spot, Wave, Ripple, Undulation, or Oscillation.  For example, the Level vector gives a 

center-weighted local average, the Edge vector responds to row or column step edges, and the 

Spot and Ripple vectors detect spots and ripples, respectively [76].  Laws described the four 

most important 5x5 masks: “E5L5 is a horizontal edge mask, enhancing horizontal structure; 

R5R5 is a high-frequency spot detector; E5S5 is a peculiar V-shaped mask which responds best 

to textures with low correlation; L5S5 is a vertical line detector, enhancing vertical edges” [25].  
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5.3. Gabor filters  

Gabor filters have proved very useful for texture classification and image recognition.  Gabor 

filters can be viewed as complex sinusoidal signals of particular frequency and orientation 

modulated by a Gaussian envelope.  They were originally introduced by Dennis Gabor in 1946 

[77].  In the following description of Gabor filters, we use the notation by Manjunath [78]. 

Gabor filters are obtained by dilations and rotations of the wavelet  ,x y :   

    
2 2

2 2

1 1
, exp exp 2

2 2x y x y

x y
x y jWx 

   

  
      

   

, (5.2) 

where 
x and y are the standard deviations which determine the width of the Gaussian, and W is 

the modulation frequency.  The Gabor filters are obtained through the generating function  

 ( , ) ( , )m

mn n nx y a x y  , (5.3) 

where ( , )mn x y  are the Gabor filters for each scale m and orientation n, with m=0,1,…M-1, 

n=0,1,…N-1, where M is the number of scales and N is the number of orientations.  By applying 

the generating function, a Gabor filter is thus given by: 

    
2 2

2 2

, , , ,

1 1
, exp exp 2

2 2

m n n
mn m n

x m y m x m y m

x y
x y a jW x 

   


  

      
   

, (5.4) 

where the variables in the equation are defined as follows: 



38 

 

 

 

 

 

 

1

1

,

, 1/ 2
2

2 2

,

cos sin

sin cos

1 2ln 2

2 1

1

1
2 tan

2 2ln 2 4

n n n

n n n

n

M
h

l

m

m l

x m

m

y m

m

x m

x x y

y x y

n

N

U
a

U

W a U

a

a W

W

N

 

 












 



 

  



 
  
 









   

           , (5.5) 

To reduce the redundancy due to the nonorthogonality of the Gabor wavelets, Manjunath has 

designed the filter bank by ensuring that the half-peak magnitude support of the filter responses 

in the frequency spectrum touch each other.  This leads to the notation presented above, in 

contrast to the common notation by Daugman, who extended the Gabor filter to two dimensions 

[79].   

With the Manjunath notation, a filter is defined by the constants 
lU ,

hU , M, and N, where the 

lower and upper frequencies 
lU and 

hU  are constants, specifying the range of frequencies for the 

filter bank.  For an image I(x,y), a 2-D Gabor transform is localized in space and frequency and 

is given by: 

      *, , ,mn mn

s t

G x y I x s y t s t   , (5.6)
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where s and t are the filter mask size variables and 
*

mn  is the complex conjugate of mn .  The 

mean and standard deviations of the Gabor transforms are often used in feature vectors that help 

distinguish the textures of images [80].   

Figure 5.3 shows an image with horizontal and vertical stripes filtered with a Gabor filter 

with orientation of 90  and frequency equal to that of the stripes.  Since the filter has horizontal 

stripes, it emphasizes the horizontal stripes in the image. 

 

 

Figure 5.3: Example of Gabor filtering. (a) A sample image with horizontal and vertical stripes. 

(b) A Gabor filter with orientation of 90  and same frequency as (a). (c) The Gabor-filtered 

image. 

 

  

(a) (b)

) 

(c) 
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5.4. Discriminant analysis  

Discriminant Function Analysis (DFA) is a standard technique that allows one to classify objects 

or individuals based on a set of measurements on those objects or individuals.  Usually the 

categories of membership (groups) are known ahead of time and the goal is to accurately predict 

from the measurements the groups to which individuals belong.  In order to classify individuals 

to groups, DFA attempts to find differences in the groups based on the multivariate 

measurements that define the groups.  Specifically, DFA attempts to find linear combinations of 

the measurements that maximize the test statistics comparing the groups.  

The data for DFA usually consists of random samples from m different groups and values for 

p independent variables X1, X2,…, Xp.  There are n values available for each of the p variables.  

The sample covariance between variables Xj and Xk is given by [81]: 

     
1

1
n

jk ij j jk k

i

c x x x x n


    , (5.7) 

where xij is the value for the i
th

 observation of variable Xj and 
jx  is the sample mean for Xj.  The 

main assumptions in DFA are that the variables are normally distributed in each group and that 

the covariances of the variables in each group are equal. 

The number of linear discriminant functions required to discriminate between the m groups is 

the minimum of p and m-1.  The linear discriminant functions (LDF) are given by [81]:  

 
p

i ik k i

k i

Z a X c


  , (5.8) 
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where ci is a constant.  The approach is to find the coefficients aik such that an analysis of 

variance (ANOVA) comparing the groups on the new variable Zi has the maximum F-ratio value.  

The F-ratio is the ratio of the between-groups to the within-groups estimate of variance [81]:  

 
 

 

1B m
F

W n m





,  (5.9) 

where B T W  ,  
2

1 1

jnm

ij j

j i

W z z
 

  , and  
2

1 1

jnm

ij

j i

T z z
 

  .  The first LDF reflects group 

differences as much as possible, and the rest of the LDFs are subject to the condition that the Zi 

are uncorrelated [81].   

If individuals are correctly assigned to groups based on a set of measurements, then a set of 

objects with unknown groupings may be assigned to groups based on their distances from the 

groups.  One method for assessing statistical distance is the Mahalonobis Distance.  This distance 

is computed from an observation  1 2, ,..., px x xx  to the center of each group i as follows [81]: 

    2 1

i i iD   x x C x x , (5.10) 

where C
-1

 is the inverse covariance matrix and  1 2, ,...,i i i pix x xx  denotes the vector of mean 

values for the sample from the i
th

 group.  The observation is assigned to the group with the 

smallest distance.  The percentage of correct allocations is an indication of how well groups can 

be separated using the available variables.  A good indicator of the predictive power of a model 

is the cross-validated classification value, which is found by allocating each individual to its 

group without using that individual to determine the group center.  For a discriminant analysis, it 
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is generally recommended that the number of individuals is at least ten to twenty times greater 

than the number of independent variables and that there are at least 20 individuals per group.   



 

CHAPTER 6:  ANALYTICAL CELL MODELING 

This chapter presents an analytical method to model the structure of biological cells.  Since most 

of the cell and nucleus shapes possess characteristics of a deformed ellipsoid, the 3D modeling is 

divided into two main steps: the base shape is fitted with an ellipsoid and then surface fluctuation 

is introduced using the Gaussian sphere model.  The method presented here to obtain the overall 

shape of biological cells is based on Ref. [82], in which the authors combined an ellipsoid and 

Gaussian sphere model to represent potato tubers.   

The first section describes the modeling of the base shape of the cells using information 

extracted from confocal images of biological cells.  The second section provides an introduction 

to the Gaussian sphere model which is used in the third section to describe the surface fluctuation 

of the cell.  The fourth section presents a validation of the procedure to extract the surface 

fluctuation parameters.  The fifth section describes the modeling of cellular organelles, including 

nuclear substructures and the mitochondria.  The final section describes the selection of the 

parameters used to create the cell models.  The parameters used in the cell models were based on 

the characteristics of lymphocytes as much as possible.  They were either based on information 

available in the literature or derived from confocal images of cells.  

6.1. Modeling the base shape 

The overall shapes of the biological cell models are extracted from processed 2D confocal 

microscopic images of biological cells.  Confocal images have already been used to obtain 3D 

structures of cells with nucleus and mitochondria [83, 15] and provide a convenient way to 

obtain the parameters necessary for analytical modeling of the surface shape.  A stack of 

confocal images and processed images from Ref. [15] are shown in Figure 6.1 (a,b).  From these 
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processed images, sets of points representing the contours of the cell and nucleus surfaces are 

obtained by selecting the cell points touching the surrounding medium and the nucleus points 

touching the cytoplasm, respectively.  The set of points obtained from the processed stack of 

images is shown in Figure 6.1(c).  These sets of points are not evenly spaced on the surfaces due 

to the pixelated nature of the processed images.  To facilitate the description of the surfaces with 

the Gaussian sphere model, the surface points are interpolated on a set of 3612 equally-spaced 

points using bilinear interpolation.  The equally-spaced points were generated using the program 

“Icosahedron” by Max Tegmark [83].  The radius of each point as a function of   and   is then 

determined, with each set of points centered at the center of mass of each surface.  An example 

of a set of equally-spaced points obtained for the cell surface is shown in Figure 6.1(d).   

The base shapes of the cell and nucleus are modeled with ellipsoids.  In deriving the 

ellipsoidal base shape, each set of 3D points is fitted to an ellipsoid with principal axes lengths of 

a, b, and c.  The orientation of the ellipsoid is specified by an angle   rotated about a unit vector 

u in the x-y plane.  The ellipsoid is rotated using a rotation matrix derived from Rodrigues’ 

rotation formula,  
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   
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  

   
 

     
  

, (6.1) 

where cosxu   and sinyu  .  The unit vector u is thus defined by the angle   which it makes 

with the x-axis.  The expression derived for the radius r of the ellipsoid is a function of the 

angles   and   in spherical coordinates and is provided in Appendix A.  There are five 

parameters (a, b, c,   and  ) required for this representation of an ellipsoid in any orientation in 
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3D space.  To find the best-fit ellipsoid for the cell and nucleus, a linear least-squares fitting 

technique is applied, which involves finding 
ellipsoidr  which minimizes the residual res: 

     
2

1

N

ell orig

i

res r i r i


  . (6.2) 

To minimize computation time, the surface points are first fitted to an ellipsoid without rotation 

to obtain the approximate size of the ellipsoid, and then the five parameters are fitted 

simultaneously.  

The ratio of the radius of the cell surface to that of the ellipsoid is used to describe the level 

of deformation and fluctuation of the cell surface from the ellipsoidal base shape: 

  
 

 

,
,

,

outline

ellipsoid

r
R

r

 
 

 
 . (6.3)

 

To allow for the modeling of a large group of differently-shaped cells with similar 

characteristics, a statistical approach can be used to model this ratio.  For this study, the Gaussian 

random sphere geometry is adapted to model the statistical properties of the cell shapes.  A 

statistical description of the Gaussian random sphere model is presented in the section below.  
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Figure 6.1: Illustration of procedure to obtain cell surface points.  (a) A stack of confocal images 

from B-cell #8.  (b) The processed images from the stack in (a).  (c) The surface points obtained 

from the outlines in (b). (d) A set of 3612 equally-spaced points interpolated from those in (c). 

Images in (a) and (b) courtesy of Scott R. Brock [15]. 
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6.2. Gaussian random sphere geometry 

In 1996, Muinonen et al. introduced a stochastic shape model known as the Gaussian random 

sphere geometry that can be used to generate a statistically-related class of irregularly-shaped 

objects [84].  The Gaussian random sphere geometry has successfully been used to model a 

variety of objects, such as ice crystals [70], sand particles [69], asteroids, and comets [85], but it 

has not, to our knowledge, been used to model biological cells.  

The radii  ,Nr r    of a Gaussian sphere are assumed to follow a multivariate lognormal 

distribution.  The radii are related to the logradii,  ,Ns   , through the relation [64]: 

  
 

2

exp ,
ˆ ˆ,

1
r r

r s
r e e

 
 



  



, (6.4) 

where r is the mean radius and  is the relative standard deviation.  The logradius naturally 

follow a multivariate lognormal distribution [86]: 

      
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 

, (6.5) 

where 
s is the covariance matrix of logradius.  The logradius can be expanded in terms of 

spherical harmonics [64]: 

    
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where 
lmY  are the spherical harmonics.  The weights 

lms  are independent Gaussian random 

variables with zero means and variances.  Single realizations of Gaussian spheres are generated 

by randomizing the weights 
lms .   

The covariance function of logradius is related to the autocorrelation function through [70]: 

  2( ) ss
C   , (6.7) 

where  sC   is the autocorrelation function,   is the angular distance between two directions 

 1 1,   and  2 2,  , and   is the standard deviation of logradius, which is related to the relative 

standard deviation through the relation: 

  2 2exp 1   .   (6.8) 

The autocorrelation function can be expanded with a Legendre series with coefficients 
lc  

following a power law: 
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The coefficients 
lc  are non-negative and directly related to the weights 

lms  in Eq. (6.6) [70].  

Combining Eqs.(6.9) and (6.9), the covariance function of logradius is obtained: 
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where the Legendre series has been truncated from the lowest order 
minl  to the highest order 

maxl . 

According to the equation above, only a few parameters must be specified to describe a Gaussian 

sphere: the relative standard deviation  , the power law coefficient  , 
minl  and 

maxl .  Each 

parameter controls different aspects of the surface fluctuation.  
minl  controls the degree of 

deformation of the surface from a spherical shape and usually takes the value 2 or 3;   controls 

the number of hills and valleys per solid angle, a lower value indicating higher spatial frequency 

of the fluctuation; 
maxl  truncates the series without losing desired accuracy; and   describes the 

range of the valley and hills radially.  These parameters make the Gaussian random sphere model 

a convenient tool for generating an arbitrarily large collection of shapes with distinct but related 

geometries.  A few examples of Gaussian spheres generated with different   and   values are 

shown in Figure 6.2(a-c).  
minl  and 

maxl  are fixed at 3 and 50, respectively, for each Gaussian 

sphere.  The Gaussian sphere in (a) has a large number of hills and valleys per solid angle but 

small radial variations, due to the small values of   and  .  Figure 6.2 (b) displays a smoother 

Gaussian sphere compared to (a) due to the increase in   from 1.7 to 3.5.  In Figure 6.2 (c),   

increases from 0.06 to 0.09, resulting in much more deformation compared to (b). 

 

 
 

Figure 6.2: Examples of Gaussian random spheres with different values for   and  .  (a)  =1.7 

and  =0.06; (b)  =3.5 and  =0.06; (c)  =3.6 and  =0.09.  
minl  and 

maxl  are fixed at 3 and 50, 

respectively, for all cases.          

 

(a) (c) (b) 
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6.3. Modeling the surface fluctuation  

To represent the surface fluctuation, the Gaussian sphere parameters mentioned above are 

extracted from the set of ratio points that describes the surface.  First, the autocovariance 

function is calculated from the set of equally-spaced ratio points derived for each surface.  The 

autocovariance function is a measure of the correlation properties of the surface roughness [87].  

A high positive value for the function indicates that a surface feature will repeat itself for that 

particular lag length, and the value of the function for a lag length of zero is equal to the square 

of the Root Mean Square (RMS) roughness of the surface.  The autocovariance as a function of 

solid angle is the average of the product of the radii deviations from the mean radius for each 

pair of points that have the solid angle between them: 
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where N
 is the number of points that have an angular distance   between them.  Then, the 

relative standard deviation   is calculated using the following expression: 
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The covariance function of logradius is calculated using the relation:  
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This function can be expressed as a Legendre polynomial series with a power law expansion as 

shown above in Eq. (6.10).  Eq. (6.10) is used to obtain 
minl  and 

maxl  using linear least-squares 

fitting.  The parameters,  ,  , 
minl , and 

maxl  are then used to generate a Gaussian sphere 

representing the fluctuation of the surface radius from the base shape of the ellipsoid.   

In order to obtain the radius of the final analytical surface shape model, it is necessary to 

multiply the radius of the base ellipsoid to the corresponding one of the Gaussian sphere.  

However, the orientation of the Gaussian sphere is arbitrary and the orientation of the Gaussian 

sphere that most closely resembles the original shape when multiplied by the ellipsoid must be 

determined.  This orientation is found by comparing three perpendicular cross sections obtained 

from the surface points derived from the confocal images to three perpendicular cross sections 

obtained from the Gaussian sphere points.  The Gaussian sphere is rotated and the orientation 

resulting in the greatest correlation between the two sets of cross sections is chosen.  The final 

shape  ,r    is obtained by multiplying the Gaussian sphere point by the ellipsoid for each   

and  , and the 3D cell structure is formed by putting together the analytical surface models of 

the cell membrane and the nucleus.  

6.4. Validation of surface fluctuation parameter extraction procedure  

In the method described in the previous section to extract Gaussian sphere parameters from a 

closed surface, there are several options that affect the values of the recovered parameters.  The 

calculation of the covariance function is affected by the number of points on the surface and the 

resolution of   in the covariance function.  Once the covariance function is calculated, the range 

of   used to fit the covariance function and the method used to calculate the standard deviation 
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impact the recovered parameters.  In this section, the procedure to determine these options in 

order to successfully extract parameters from a closed surface is described. 

In order to determine the number of points on the surface and the resolution of   in the 

covariance function required for successful recovery of the Gaussian sphere parameters, a 

Gaussian sphere ( =3,  =.05, 
minl =2, 

maxl =50) was generated and interpolated onto three sets of 

approximately equally-spaced points.  The Gaussian sphere had a resolution of 1.0° for the polar 

and azimuthal angles, while the three sets of points contained 3612, 15212, and 62412 points on 

the surface with an approximate solid angle   between adjacent points of 3.2, 1.5 and 0.75° , 

respectively.  For each pair of points on the surfaces,   was calculated and rounded to the 

nearest 1.0, 3.0, or 5.0° to provide three resolutions for the covariance function, which was then 

calculated using Eq. (6.11) for 0 180   .  The calculated covariance function was fitted using a 

linear least-squares fitting technique for four angular ranges: 0 45   , 0 90   , 90 180   , 

and 0 180    to recover the parameters   and 
minl .  Figure 6.3 below shows the covariance 

functions calculated for Gaussian spheres with 3612, 15212, and 62412 equally-spaced points 

using a resolution of 1.0   for the covariance function.  Also shown is the analytical form of 

the covariance function given by Eq. (6.10) with 3.0  , 
minl =2, and 

maxl =50.  The recovered 

covariance functions lie on top of each other, with more variations in the curve for the Gaussian 

spheres with fewer surface points due to the angle between adjacent points on the Gaussian 

spheres being larger than the resolution of the covariance function for those Gaussian spheres.  

The covariance functions calculated using a resolution of 3.0 and 5.0° are not shown because 

they are smooth and lie on top of the recovered covariance functions.  It can also be seen in 
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Figure 6.3 that there is closer agreement between the actual and recovered covariance functions 

for smaller angles.   

 

 

Figure 6.3: Comparison of covariance functions of logradius calculated from Gaussian spheres    

( =3,  =0.05, 
minl =2, 

maxl =50) to the analytical form given by Eq. (6.10) (black). The Gaussian 

spheres were generated with three different surface resolutions of 3612, 15212, and 62412 

equally-spaced points, represented by red, blue, and green lines, respectively. The angular 

resolution for the covariance functions is 1.0°.    

 

Based on the previous figure, it would seem that increasing the number of evenly-spaced 

points on the surface would improve the results especially when using a 1.0° resolution for the 

covariance function.  However, the   and 
minl  values recovered for the three surfaces were very 

similar regardless of the number of points on the surface or the resolution of the covariance 

function, although further tests (not shown) did reveal that reducing the number of points any 

further resulted in poorer results.  Table 6.1 presents the average   and 
minl  recovered when 



54 

 

fitting the covariance functions mentioned above with four angular ranges.  The best parameters 

are recovered when using the range 0 90    .   

 

Table 6.1.  Average (s.d) Gaussian sphere parameters recovered for a Gaussian sphere                 

( =3,  =.05, 
minl =2, 

maxl =50) 

 

Angular range of 

covariance function    
  minl  

0-45 2.90 (0.00) 2 (0.00) 

0-90 2.99 (0.03) 2 (0.00) 

90-180 4.40 (0.09) 3 (0.00) 

0-180 3.42 (0.04) 2 (0.00) 

 

 

To determine whether to allow 
maxl  to vary or to fix it at a certain value when fitting the 

covariance function to recover the Gaussian sphere parameters, several Gaussian spheres were 

generated for different values of the parameters  ,  , and 
minl  and the covariance function was 

calculated for each Gaussian sphere using Eq. (6.11).  The residuals between this covariance 

function and the analytical form of the covariance function given by Eq. (6.10) were computed 

as a function of 
maxl  for fixed values of   and 

minl .  We observed that the behavior of the residual 

as a function of 
maxl  depended on the value of  .  For low values of  , the minimum in the 

residual occurred at low values of 
maxl  (

max 20l  ), while for values of   approaching and 

exceeding the original   value, the residual converged and reached its minimum value at high 

values of 
maxl  (

max 50l  ).  Thus, to avoid recovering low values for 
maxl  and because higher order 

terms (
max 50l  ) do not have a noticeable effect on the appearance of the recovered Gaussian 

sphere, 
maxl  was fixed at 50 for the fitting procedure.  Figure 6.4 shows an example of the 
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residual as a function of 
maxl  for fixed values of   computed for a Gaussian sphere ( =3,  =.05, 

minl =2, 
maxl =50).  For 2.9  , the residual has a minimum at 

max 10l  , while for 2.9  , the 

residual converges at 
max 50l  .   

 

 

Figure 6.4: The residual as a function of 
maxl  in the covariance function fitting for a Gaussian 

sphere ( =3,  =.05, 
minl =2, 

maxl =50) with different fixed values for  : (a) 2.0  , (b) 2.6  , 

(c), 2.9  , and (d) 5.0  . 

 

Finally, there are two ways to calculate the relative standard deviation.  It can be obtained by 

taking the square root of the covariance function at 0    and dividing by the mean.  This is 

because the value of the covariance function for a lag length of zero is equal to the square of the 

RMS roughness of the surface, and the RMS value is related to the relative standard deviation 

(a) (b) 

(c) (d) 
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through 
2 2 2

rmsr r , where r is the mean radius.  Or, it can be directly calculated using Eq. 

(2.13).  It was found that direct calculation yielded better results because it reduced error due to 

rounding of the solid angle in the calculation of the autocovariance function.   

The method just described was then used to recover the parameters from different 

realizations of Gaussian spheres with known parameters in order to determine the accuracy of the 

method for different  ,  , and 
minl  values.  Fifty realizations of Gaussian spheres were 

generated with various  ,  , and 
minl  values.  The original and average recovered values for 

each set of parameters are reported in Table 6.2.  When finding the best fit for   and 
minl , the 

range of the parameters was limited as follows: 0.0 10.0, 0.1     , and 
min 2 4l   .  This range 

for   was chosen because larger values for   do not have a noticeable effect on the shape.  Also, 

min 0l   and 1 were excluded from the fitting procedure because 
min 0l   varies the size while 

min 1l   varies the location of the origin, and higher values for 
minl  were omitted because they 

result in unrealistic biological shapes due to the lack of the lower spherical harmonics. 
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Table 6.2.  Original and average recovered parameters (s.d. in parenthesis) for 50 realizations of 

Gaussian spheres 

Original Gaussian sphere parameters Average recovered Gaussian sphere parameters 

    minl      minl  

1.50 0.050 2 1.55 (0.22) 0.049 (0.005) 2.22 (0.42) 

2.00 0.050 2 2.04 (0.32) 0.048 (0.007) 2.18 (0.39) 

2.00 0.075 2 2.04 (0.32) 0.072 (0.010) 2.18 (0.39) 

2.00 0.050 3 2.00 (0.29) 0.049 (0.004) 3.12 (0.33) 

2.50 0.050 2 2.44 (0.47) 0.048 (0.008) 2.08 (0.27) 

3.00 0.050 2 2.87 (0.62) 0.047 (0.010) 2.04 (0.20) 

3.00 0.075 2 2.87 (0.63) 0.070 (0.014) 2.04 (0.20) 

3.00 0.050 3 2.91 (0.45) 0.048 (0.006) 3.04 (0.20) 

4.00 0.050 2 3.69 (0.93) 0.046 (0.012) 2.00 (0.00) 

4.00 0.075 2 3.69 (0.95) 0.069 (0.017) 2.00 (0.00) 

4.00 0.050 3 3.81 (0.70) 0.047 (0.007) 3.00 (0.00) 

 

 

For all trials,   and   were recovered within 10% of the original value.  If not exact, the 

recovered value for 
minl  was 1 greater than the actual value.  The standard deviations (s.d.) of the 

recovered   and   tend to increase as    increases for each 
minl  value because as   increases, 

small changes in   and   have less impact on the resulting shape.   

As can be expected due to the close agreement between the original and average recovered 

parameters, the original Gaussian spheres and those generated with the average recovered 

parameters all appear almost identical.  Figure 6.5 shows an example of an original Gaussian 

sphere ( =3,  =0.05, 
minl =2, 

maxl =50), a Gaussian sphere generated with the average recovered 

parameters ( =2.87,  =0.047, 
minl =2, 

maxl =50), and Gaussian spheres generated with one 

standard deviation added to or subtracted from the average recovered   and   values.  
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Figure 6.5: Comparison of original Gaussian sphere ( =3,  =0.05, 
minl =2, 

maxl =50) with 

Gaussian spheres generated with average recovered parameters.  (a) original Gaussian sphere and 

Gaussian spheres generated with (b) 
minl =2, 

maxl =50,  =3.49,  =0.037, (c) 
minl =2, 

maxl =50,

=2.87,  =0.047, and (d) 
minl =2, 

maxl =50,  =2.25,  =0.057. 

 

Figure 6.6 presents an example of a covariance function calculated using Eq. (6.11) for one 

Gaussian sphere ( =3,  =.05, 
minl =2, 

maxl =50) and the analytical form of the covariance 

function given by Eq. (6.10) with the original parameters ( 3.0  , 
minl =2, and 

maxl =50) and with 

the recovered parameters for one realization of the Gaussian sphere ( 3.8  , 
minl =2, and 

maxl

=50).   

 

 

 

(a) (b) (c) (d) 
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Figure 6.6: Examples of covariance functions calculated using Eq. (6.11) for a Gaussian sphere   

( =3,  =.05, 
minl =2, 

maxl =50) (blue line) and analytical forms of the covariance function given 

by Eq. (6.10) with the original parameters (dashed line) and with the recovered parameters          

( =3.8, 
minl =2, and 

maxl =50) (black line).  

 

6.5. Modeling cellular organelles  

In addition to the cell and nucleus surfaces, the cellular substructures, including nuclear 

substructures and the mitochondria, are also modeled.  As described in §2.3, the nucleus is 

heterogeneous due to the presence of various organelles.  In the nucleus model presented here, 

the inhomogeneity is modeled as variations in index of refraction.  The model is flexible in terms 

of the sizes of the organelles and the number of different indices that can be modeled.  Small and 

large structures in the nucleus are modeled as ellipsoids of various sizes (voxel value equal to 

one) placed at random locations in the nucleus (voxel value equal to zero).  After a certain 

number of ellipsoids are placed without overlap, some ellipsoids are allowed to overlap in order 
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to represent larger nuclear substructures.  Regardless of the overlap between ellipsoids, all of the 

ellipsoidal structures have voxel values equal to 1.  The ellipsoids fill up the desired percentage 

of the nucleus and then a window average is computed around each voxel in the nucleus to 

obtain more gradual transitions from the nucleus base to the refractive index fluctuations.  The 

voxel values are then rounded to obtain the number of indices desired.   

Figure 6.7 illustrates the effect of changing the percentage of ellipsoidal fluctuations and the 

number of nearest neighbors used in the window average when modeling the nuclear 

substructures.  In each model, the ellipsoid fluctuations fill up 20% of the nucleus without 

overlap and the values are rounded to obtain five indices of refraction in the nucleus.  Also, a 

nuclear membrane modeled as a thin shell of width 0.1 m has been added to each nucleus 

model.  From left to right in Figure 6.7(a-c and d-f), the ellipsoidal fluctuations fill up 40%, 50%, 

and 60% of the nucleus prior to the window average, respectively.  From top to bottom in Figure 

6.7, the window average around each voxel is computed using a 3x3x3 and a 5x5x5 box 

surrounding each voxel.  A higher percentage of ellipsoidal fluctuations results in higher overall 

intensity, while increasing the number of nearest neighbors for the window average decreases the 

intensity.   
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Figure 6.7: Cell models showing the effect of changing the percentage of ellipsoidal fluctuations 

and the number of nearest neighbors used in the window average when modeling the nuclear 

substructures. (a-c) The ellipsoidal fluctuations fill up to 40%, 50%, and 60% of the nucleus 

prior to the window average, respectively, and the window average around each voxel is 

computed using a 3x3x3 box surrounding each voxel. (d-f) Same as (a-c) but with a 5x5x5 box.  

 

Mitochondria are modeled as ellipsoids of various sizes and shapes.  The modeling of 

mitochondria as ellipsoids allows for flexibility in their placement in the cytoplasm according to 

specific spatial distributions, and the number of mitochondria is only limited by the size of the 

mitochondria and the available volume in the cytoplasm.  The specific mitochondrial 

characteristics modeled differ in each study and are discussed on a case by case basis. 

 

(b) (a) (c) 

(d) (e) (f) 
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6.6. Selection of cell model parameters 

This section describes the selection of the specific parameters that were selected for the 

construction of the analytical cell model.  To model the cell and nucleus surfaces, the procedure 

described in §6.3 was applied to four stacks of confocal images from biological cells.  

Specifically, they were B-cell precursors derived from the peripheral blood of a patient with 

acute lymphoblastic leukemia [15].  The recovered Gaussian sphere parameters for each B-cell 

are given in Table 6.3 below.  

 

Table 6.3.  Recovered Gaussian sphere parameters for four B-cell surfaces and nuclei 

B-cell Ellipsoid semi-major axis (m) 

Gaussian sphere 

parameters 

 a b c minl      

#7 cell 5.00 5.32 4.64 2 1.7 0.048 

#7 nucleus 4.36 4.44 3.32 3 3.4 0.095 

#8 cell 5.12 4.88 5.96 2 2.3 0.068 

#8 nucleus 3.32 4.04 4.76 2 2.6 0.072 

#1 cell 4.56 4.64 4.96 3 2.1 0.036 

#1 nucleus 3.48 4.16 4.24 3 2.4 0.054 

#2 cell 4.56 5.84 4.76 2 1.9 0.063 

#2 nucleus 4.04 3.88 4.48 2 1.7 0.059 

 

The mean values of the ratio of the major and minor axes for the cell and nucleus are 1.13 and 

1.18, respectively, which agree well with values of 1.1 and 1.2 found in the literature [28].  The 

value of   ranges from 1.7 3.4  while the value for   ranges from 0.036 0.094 .  Figure 6.8 

presents the 3D reconstruction of two B-cell models [15] along with the analytical shape models.   
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Figure 6.8: Comparison of reconstructed and analytical 3D models of biological cells. (a,c) 

models reconstructed from confocal images for B-cell #7 and #8, respectively.  (b,d) Analytical 

models for each cell.  Images in (a) and (c) courtesy of Scott R. Brock [15].  

 

For all of the cell models that contain inhomogeneous nuclei, the parameters were chosen 

based on a visual inspection of confocal microscope images from Jurkat and Ramos cells.  These 

confocal images were chosen due to the various pixel intensities present, which were assumed to 

correspond to various refractive indices due to the nuclear structures.  Based on these images, the 

major structures were modeled as ellipsoidal index of refraction fluctuations with mean axes of 

length 0.3 0.05  m.  Ellipsoids were added without overlap to fill out approximately 20% of the 

nucleus volume, allowing the fluctuations to be dispersed throughout the nucleus.  More 

ellipsoids were then added, this time allowing overlap, until the fluctuations filled out 

approximately 50% of the nucleus volume.  The window average around each voxel was 

computed using a 5x5x5 box surrounding each voxel.  The values were rounded to obtain five 

indices of refraction in the nucleus.  Additional examples of cell models created with the 

parameters just described will be presented in Chapters 8-10.   

Figure 6.9 provides a visual comparison of (a) simulated and (b) experimental   

polarization images.  The incident wavelength was 532 nm and the scattering angle ranges were 

90 18s    and 90 14s   , respectively.  Figure 6.9 (a) shows the light scattering pattern 

(a) (b) (c) (d) 
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obtained using ADDA with dpl equal to 10 for a cell model created as described above.  The 

surface fluctuation for the cell model used the Gaussian sphere parameters derived for B-cell #8 

shown in Table 6.3.  The cell and nucleus volumes were 624 m
3
 and 268 m

3
, respectively.  

Mitochondria were modeled as ellipsoids with major axis size equal to 0.5 m.  A diffuse 

mitochondrial distribution was modeled and the ratio of mitochondria to cell was 0.05.  The 

nucleus contained five levels of refractive index fluctuations.  Figure 6.9 (b) depicts the image 

obtained experimentally from a Jurkat cell using a diffraction imaging flow cytometer [88].  The 

speckles in both images have similar sizes and spatial configurations.   

 

 

Figure 6.9: Comparison of (a) simulated and (b) experimental   polarization images for a cell. 

The incident wavelength was 532 nm and the scattering angle ranges were 90 18s    and 

90 14s   , respectively.  Image in (b) courtesy of Dr. Xin-Hua Hu. 

 

 

 

 

 

 

(a) (b) 



 

CHAPTER 7:  COMPARISON OF LIGHT SCATTERING PATTERN ANALYSIS 

METHODS 

In this study, several methods to analyze light scattering patterns from realistic biological cell 

models were examined.  The azimuthally-averaged angular distribution of the scattered light 

intensity, two bi-parameter scatter plots, the Haralick features, the Laws energy measures, and 

Gabor filters were compared for their effectiveness in correlating changes in light scattering 

patterns from biological cells to variations in their morphological features.  To evaluate the 

capabilities of these methods, the structure of a cell model was systematically altered to 

determine how well each method could detect the corresponding changes in the light scattering 

patterns.  Cell structural variations were introduced in the cell shape and surface fluctuation, 

nuclear size, and mitochondrial characteristics (shape, spatial distribution, and volume density).  

The results suggest that two bi-parameter plots combined with the Gabor filter approach provide 

substantial information regarding the major structural features and mitochondrial properties of 

the cell.  

7.1. Simulation methodology 

A series of analytical cell models were created for a controlled study relating biological cell 

components to features in light scattering patterns.  These cell models were divided into five 

groups based on their basic structure, which ranged from simple to more complex with the 

gradual introduction of realistic features into the cell structure.  Group #1 consisted of the 

simplest cell models where the basic cell structure was approximated by a concentric spherical 

nucleus and cell.  In group #2, the basic cell structure was modeled by an off-centered, ellipsoid-

shaped nucleus and cell.  In group #3, surface fluctuation was added to both the nucleus and cell.  
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In these three groups, the mitochondria population was approximated by equal-sized spheres.  

Group #4 introduced size variation among the spherical mitochondria, and group #5 replaced the 

spherical mitochondria by ellipsoidal mitochondria with various sizes and axis ratios.   

 The specific parameters used for the size and shape of the cell models in this study were 

based on the procedure described in §6.3 applied to B-cell #8.  The axial lengths of the cell 

surface shapes in groups #2 to #5 were 5.13, 4.58 and 5.33m and those of the nuclei were 2.83, 

2.10, and 2.63 m.  The nuclear size was scaled down to produce a volume ratio of nucleus to 

cell of approximately 12.5% in order to leave space for the mitochondria.  The radii of the 

spherical cell and nucleus of the models in group #1 measured 5.03 and 2.55 m to match the 

cell and nucleus volumes of the models in the other groups.  The parameters for the surface 

fluctuations were set to be  = 4.2 and  = 0.0814 for the cell and  = 3.1 and  = 0.0963 for 

the nucleus.  An extra small-scale fluctuation was also added to the cell base shape to provide 

finer surface roughness with  = 2.0 and  = 0.03.  

Within each of the cell groups described above, the mitochondria were placed in the 

cytoplasm according to a specific combination of spatial distribution and volume density.  Three 

distributions were selected for this study: the diffuse, the peripheral, and the perinuclear.  The 

dimensions of the peripheral and perinuclear zones, limited by the size range and density of the 

mitochondria, were set to be 0.8 m along the radius direction.  The mitochondrial volume 

density, defined as the ratio of the total volume of the mitochondria to that of the cell, was 

chosen to be 1.0, 4.0, and 7.0%.  The number of mitochondria was allowed to vary among the 

three densities. 

The size of the mitochondria varied in each cell group in order to keep the number of 

mitochondria at a specified density similar among different distributions.  The radii of the 
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spherical mitochondria in cell groups #1 to #3 varied slightly among cell models with different 

densities and distributions in the range of 0.29 m – 0.31 m.  The radius range of the spherical 

mitochondria of various sizes in model #4 was 0.19 m - 0.42 m.  The axial lengths for the 

ellipsoidal mitochondria in model #5 were adopted from the literature [16, 17] with the major 

axis in the range 0.3 m - 0.8 m and the minor axes in the range 0.15 m - 0.3 m.  A total of 

forty-five analytic cell models were created with three spatial distributions and three densities for 

mitochondria in each of the five cell groups.   

 All of the light scattering calculations used the DDA method.  The incident field was 

modeled as a plane wave with wavelength  = 1.0 m.  The cell was assumed to be immersed 

inside a host medium of index of refraction n=1.35.  The indices of refraction of each cell 

component were chosen based on the literature: ncytoplasm=1.3675, nnuc=1.40, and nmito=1.42.  

Each cell component had an imaginary index of refraction n=0.000015.  For each scatterer, the 

Mueller matrix elements as a function of the scattering angle 
s  and the azimuthal angle 

s  were 

calculated for eight different incident electric field directions spanning all space.  This was 

equivalent to simulating the scattering from eight orientations of the scatterer with the incident 

direction fixed.  The set of eight incident angles (
s ,

s ) used are {(9.7°, 315.0°), (65.9°, 71.6°), 

(66.0°, 198.4°), (80.3°, 315.0°), (99.7°, 135.0°), (114.1°, 18.4°), (114.1°, 251.6°), (170.3°, 

135.0°)}.  The scattering patterns were obtained by projecting the 
11S  Mueller matrix element 

onto a plane 500 m away in the side angle direction.  The center location of the plane, denoted 

by the polar angle   and azimuth angle  , was 90   and 90  , and the half angle 

subtended by the detector at the lens was 30.0  with angular resolution of 1.0  along each 

direction.  A schematic is shown in Figure 7.1. 
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Figure 7.1: Projection image schematic for light scattering simulations. The 
11S  Mueller matrix 

element is projected onto a plane 500 m away in the side angle direction ( 90   and 90  ). 

 

Examples of the cell models in groups #1 and #5 with perinuclear, diffuse, and peripheral 

mitochondrial distributions and their corresponding projected scattering images are shown in 

Figure 7.2.  The mitochondrial density is 4.0% for these cell models.  It is clear that the projected 

images are very different among cell models with different structure characteristics; there are 

less variations in intensity in the models from group #5 (bottom) compared to those from group 

#1 (top) and the speckle size decreases as the mitochondrial distribution is closer to the 

membrane (left to right). 

 

Projection image 

Incident 

beam 

Scatterer 
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Figure 7.2: Examples of cell models and their corresponding projected scattering images.  (a-c) 

Concentric spherical cell model with equal-sized spherical mitochondria from cell group #1.    

(d-f) Cell model with ellipsoidal base shape, surface fluctuation, and ellipsoidal mitochondria of 

various sizes in cell group #5.  Models are shown with (a,d) perinuclear, (b,e) diffuse, and (c,f) 

peripheral mitochondrial distributions.  

 

 As discussed above, the Haralick features, Laws energy measures, and Gabor filters were 

applied to analyze the projected images.  When calculating the Haralick features, a moving 

window of size 15x15 pixels was chosen and the gray levels of the images were quantized to 

eight values, as common in the literature [89].  The co-occurrence matrix was calculated 

for nearest neighbors (d=1) and averaged over the four directions.  Furthermore, only 11 out of 

the 14 Haralick features were calculated due to computational difficulties in features #12-13 and 

instability in #14.  For the analysis with the Laws masks, the absolute value in local 

neighborhoods (15x15 pixels) around each pixel of the filtered image was summed to yield a set 

of 24 texture energy images.  The arithmetic mean of these images was calculated to yield a set 

of 24 energy measures for each original image.  For the Gabor filters, the frequencies and 

orientations chosen were based on the characteristics of the scattering images from the cell 

models.  Three frequencies (0.1, 0.2 and 0.4 pixel
-1

) and four orientations evenly spaced from 0° 

to 135° were chosen, producing a set of 3x4 Gabor filters.  The size of the filter was set to be 

(b) (c) 

(a) 

(a) 

(d) (f) (e) 
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21x21 pixels.  The arithmetic mean of each Gabor-filtered image was computed.  The notation 

Gmn represents the arithmetic mean of the Gabor-filtered image produced by applying the filter 

with the m
th

 frequency and n
th

 orientation to an image.  For example, G33 represents the 

arithmetic mean of the Gabor-filtered image produced by applying the filter with frequency 0.4 

pixel
-1

 and orientation 90° to an image.   

Each of the three texture analysis methods yields a feature vector consisting of a set of values 

that represents a scattering image.  To find an accurate and efficient way to differentiate images 

using these vectors, we explored the combinations of the vector components that would best 

characterize each scattering image when plotted in a scatter plot.  For the various cases studied in 

the section below, the best combinations were found to be; Difference Variance vs. Sum Average 

for the Haralick features; S5R5 vs. E5W5, a convolution of the Spot and Ripple vectors versus 

that of the Edge and Wave vectors for Laws measures; and G33 vs. G13 for the Gabor measures.  

These combinations are displayed in scatter plots which are referred to as Haralick, Laws, or 

Gabor scatter plots in the discussions below.  

7.2. Analysis of angular distribution of the scattered light intensity  

For an initial analysis of the light scattering data, the azimuthally-averaged angular distribution 

of the scattered light intensity averaged over the eight incident orientations for the entire 

scattering angle range of 0° - 180° was examined.  Results for cell groups #1-5 are displayed in 

Figure 7.3 (a-e), respectively, and results for all cell groups together are shown in Figure 7.3 (f).  

In the following figures, the results for cell models with different mitochondrial spatial 

distributions are represented by blue (diffuse), red (peripheral), and green (perinuclear) symbols, 
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and the mitochondrial densities are indicated by the shade of the color, from light (1%) to dark 

(7%). 

In Figure 7.3, the curves group according to different cell characteristics in separate regions 

of the scattering angle.  Since all of the models have the same cell and nucleus volume, all of the 

curves overlap very well in the first 10° when plotted together, demonstrating the well-known 

fact that the forward scattering is closely related to the cell volume and cell scattering power, and 

it also shows that the forward scattering is not very sensitive to cell structure variation.  From 

10° to 25°, the curves appear to group according to mitochondrial spatial distribution with the 

perinuclear distribution (green curves) well separated from the other two distributions, especially 

in Figure 7.3 (c-e).  In this angular range, the curves in Figure 7.3 (a-b) display more pronounced 

oscillations, due to the spherical and ellipsoidal symmetry, respectively, in the main cell 

structure.  These oscillations obstruct the distinction between mitochondrial distributions in this 

angular range.     

The curves group according to mitochondrial density in the region from 40° to 180°.  In all of 

the cell groups, the curves for cell models with a density of 1% are better separated from the 

others.  In the region from 90° to 130°, the curves in Figure 7.3 (a-c) are significantly lower with 

a dip at 120° while those in Figure 7.3 (d-e) are relatively level in this region.  This dip seems to 

be due to the change from spherical to ellipsoidal mitochondria in the cell models.  
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Figure 7.3: The azimuthally-averaged angular distribution of the scattered light intensity 

averaged over the eight incident orientations.  (a-e) Results of cell models in groups #1 - #5, 

respectively.  (f) Results for all cell models.  Cell models with diffuse, peripheral, and 

perinuclear distributions are represented by blue, red, and green lines, respectively.  

Mitochondrial density is indicated by the shade of the color, from light (1%) to dark (7%).  

 

(a) (d) 

(b) (e) 

(c) (f) 
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Next, several ways of differentiating the cell models were explored utilizing data from the 

various scattering angle regions discussed above.  Figure 7.4 presents the bi-parameter scatter 

plots of the forward scatter, 
11S (0°), versus the integral of 

11S  over the range (a-e) 
s = 25°

 
- 45° 

and (f-j) 
s = 90° - 110°.  Instead of the orientation-averaged data presented in Figure 7.3, data 

for the eight individual orientations of each cell model are displayed here, with each orientation 

represented by a data point.  Data for the cell models of the five different basic structure groups 

are plotted separately from top to bottom.  

The bi-parameter scatter plots of 
11S (0°) vs.  in Figure 7.4 (a-e) clearly show 

that data points for each cell model respond strongly to changes in the mitochondrial 

characteristics.  Figure 7.4 (a) contains three distinct subgroups corresponding to the three 

mitochondria densities (increasing from left to right) and within each sub-group, the spatial 

distributions of the mitochondria can be separated vertically by the forward scatter intensity.  In 

Figure 7.4 (b) and (c), as the complexity of the cell and nucleus base shapes increases, the gaps 

between the distribution subgroups practically disappear as the data points spread out vertically, 

while the distinction between the mitochondrial densities is still present.  In Figure 7.4 (c-e), as 

mitochondrial size and shape variations are introduced, the scatter plot undergoes more dramatic 

changes.  The sub-groups of different densities display a horizontal shift to the right and also 

have a better defined separation between them.   

In Figure 7.4 (d), a shift to the right of the data points from the cell models with a perinuclear 

distribution and larger mitochondria densities is noticed.  This shift is caused by the relatively 

larger number of smaller mitochondria used for these cell models, a consequence of space 

limitation in the perinuclear zone for spherically-shaped mitochondria.  The same shift to the 
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right was noticed in other models (data not shown) where the number of mitochondria was 

purposely increased while the density was kept constant.  The space limitation issue is not as 

severe in the case of cell group #5 where the shape is replaced by ellipsoids, thus no such effects 

are observed in Figure 7.4 (e).  This observation further demonstrates the capability of this type 

of bi-parameter scatter plot of detecting variations within the mitochondria population. 

A different grouping pattern of data points and different response to cell structural changes 

are observed in Figure 7.4 (f-j), the bi-parameter scatter plot of 
11S (0°) vs. .  Figure 

7.4 (f) shows clear subgroups of different mitochondrial densities and spatial distributions.  In 

Figure 7.4 (g-h), the gaps between the subgroups disappear due to the changes in the base shape 

of the cell models.  This is especially apparent in Figure 7.4 (h), where surface fluctuation is 

introduced.  No significant changes in the plots are observed in Figure 7.4 (i-j), where 

modifications are made to the size and shape of the mitochondria.  Overall, the results suggest 

that the signal in the angular range from 
s = 25°

 
- 45° is more sensitive to changes in the overall 

structure rather than mitochondrial changes.  
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Figure 7.4: Bi-parameter scatter plots of the forward intensity versus the azimuthally-averaged 

intensity integrated over the scattering angle range of (a-e) 90°–110° and (f-j) 25°–45°.  Data for 

the cell models in groups #1–#5 are plotted separately from top to bottom.  Mitochondrial spatial 

distributions are represented by blue (diffuse), red (peripheral), and green (perinuclear) color, 

and the shade of each color indicates mitochondrial density, from light (1%) to dark (7%). 
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In summary, the azimuthally-averaged angular distribution of the scattered light intensity 

provides valuable insight into the surface and internal structure of the cell model.  Signals in 

different angular regions provide information about different aspects of the cell structure: the 

forward scattering region relates to the cell size, the 
s = 10° - 25° range to the mitochondrial 

distribution, the 
s = 25° - 45° range to the main cell structure, 

s = 90° - 110° range to 

mitochondrial size and shape, and the region from 
s = 40° - 180° to mitochondrial volume 

density.  Although it has been suggested that the forward scatter can differentiate between 

mitochondrial spatial distributions [28], this is only reaffirmed in the scatter plots of the simplest 

cell models in Figure 7.4 (a and f).  Increasing the complexity of the model diminishes the 

distinction between the distributions, as is evident in the rest of the plots in Figure 7.4. 

7.3. Analysis of light scattering diffraction image  

 The 2D projected scattering images were analyzed using the image texture analysis 

methods described in Chapter 5.  The images were first analyzed with Gabor filters.  The 

arithmetic means G33 and G13 of the Gabor-filtered images were computed for each orientation of 

the cell models.  Figure 7.5 (a) presents the Gabor scatter plots of G13 vs. G33 for all forty-five 

models combined.  Due to the lack of significant differences between the results of the individual 

cell groups, the plots for each cell group are not shown separately as in Figure 7.4.  The data 

points of the cell models with the same mitochondrial distribution appear to cluster linearly.  The 

clustering indicates that the Gabor scatter plot may provide a quantitative way of differentiating 

cells with different mitochondrial distributions.  In addition, Figure 7.5 also shows that Gabor 

filters may be a useful tool for separating cell models with different mitochondrial densities.  
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Figure 7.5: Gabor scatter plot with data from all cell models in groups #1 - #5. Results with all 

eight incident orientations for each cell model are shown. Mitochondrial spatial distributions are 

represented by blue (diffuse), red (peripheral), and green (perinuclear) color, and the shade of 

each color indicates mitochondrial density, from light (1%) to dark (7%).   

 

 

Next, the same set of images was analyzed using the Haralick and Laws methods.  The 

Haralick and Laws scatter plots for cell group #5 are displayed in Figure 7.6 (a) and (b), 

respectively.  There were no significant differences in the scatter plots of the cell models 

associated with the other cell groups (not shown).  The data points in Figure 7.6 are closely 

packed and there is a significant amount of overlapping among the cell models with different 

mitochondrial distributions and densities.  There is an exception in Figure 7.6 (b), where the cell 

models with a perinuclear distribution are well separated from the rest, agreeing with the results 

from previous studies [3].  Several other pairs of Law energy measures, such as R5E5 and W5E5 

(not shown), are capable of separating the cell models with a perinuclear mitochondrial 

distribution, but only when the simplest cell structure model #1 is used.  Overall, it is evident that 
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these two methods are not as effective in relating changes in the light scattering patterns to 

variations in the cell morphological characteristics as the bi-parameter 
11S  scatter plot in Figure 

7.4 and the Gabor scatter plot in Figure 7.5.  Thus, the Haralick and Laws methods were not 

considered further in the rest of the studies presented in this dissertation. 
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Figure 7.6: (a) Haralick and (b) Laws scatter plots for cell models in group #5. Mitochondrial 

spatial distributions are represented by blue (diffuse), red (peripheral), and green (perinuclear) 

color, and the shade of each color indicates mitochondrial density, from light (1%) to dark (7%). 

 

The last part of this study compares the ability of the angular distribution of the scattered 

light intensity and Gabor filters in detecting differences in nuclear size in the cell models.  Here, 

the volume of the nucleus in the cell models in group #5 was increased from 12.5% of the total 

cell volume to 25.0% and 50.0%.  A larger nucleus reduces the available space for the 

mitochondria in the cytoplasm; consequently, the cell models were limited to a diffuse 

mitochondrial distribution for the 50.0% case.  Results for cell models in group #5 are presented 

in the form of the bi-parameter scatter plot of the forward scatter versus the integral of 
11S  over 

(a) (b) 
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the range 
s =90° - 110° in Figure 7.7 (a) and the Gabor scatter plot in Figure 7.7 (b).  The 

results in both plots are orientation-averaged.  The effect of nuclear size is most evident in Figure 

7.7 (a) as greater nuclear volume increases forward scatter.  The points are well grouped 

vertically according to nuclear size and horizontally according to density, and the points are 

closely packed within each group.  The Gabor scatter plot in Figure 7.7 (b), similarly to Figure 

7.5, is responsive to mitochondrial distribution, but is less dependent on the volume of the 

nucleus, with only a slight shift to the right with an increase in nuclear size.  The latter behavior 

further confirms the observation discussed earlier that the Gabor scatter plot for images at this 

scattering angle is not very sensitive to changes in the main structure of the cell. 
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Figure 7.7: (a) The forward intensity versus the azimuthally-averaged intensity integrated over 

the scattering angle range of 90°–110° and (b) the Gabor scatter plot for cell models with 

different nucleus-to-cell volume ratios. The data in each plot is averaged over the eight incident 

orientations (±1 standard deviation). Mitochondrial spatial distributions are represented by blue 

(diffuse), red (peripheral), and green (perinuclear) color, and the shade of each color indicates 

mitochondrial densities, from light (1%) to dark (7%). 

 

This study investigated the capabilities of various light scattering pattern analysis methods in 

correlating variations in cell models to changes in the light scattering patterns.  The complexity 

(a) (b) 
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of the cell model was gradually increased, from the standard spherical cell model with spherical 

mitochondria to an off-centered ellipsoidal base shape with surface fluctuation and ellipsoidal 

mitochondria of various sizes.  The influence of these structural variations on light scattering 

patterns was examined through analysis with the bi-parameter plots and the Gabor, Haralick, and 

Laws image texture analysis methods.  It was found that the bi-parameter plots responded 

strongly to an increase in the complexity of the cell model, allowing changes in the main 

structure of the cell and in the mitochondria to be identified.  In particular, the bi-parameter plot 

of 
11S  with an angular range of 90° - 110° is well suited for characterization of mitochondrial 

density and nuclear size.  The results of texture analysis on diffraction images show that Gabor 

filters have the potential to provide a new and quantitative approach to distinguish different 

mitochondrial distributions, while the Laws and Haralick texture measures are not very efficient 

in discriminating structure variations in realistic cell models.  As a result of this study, the Laws 

and Haralick methods were not pursued further.   



 

CHAPTER 8:  CORRELATING THE MORPHOLOGY AND LIGHT SCATTERING 

PATTERNS OF BIOLOGICAL CELLS 

This chapter presents a study of the correlation between the morphology and light scattering 

properties of biological cells.  Here we analyze the changes in the light scattering patterns in 

response to the systematic alterations in the cell models.  The effects of nuclear structure and 

mitochondria on the light scattering patterns are examined. 

For this study, seven cell models were created.  The first model consisted of concentric 

spheres with radii 3.9 and 5.3 m for the nucleus and cell, respectively.  In the second model and 

in the rest of the models, the nucleus was placed off-centered by 0.35 m.  In the third model, a 

thin nuclear membrane of approximate thickness of 0.1 m was added, while in the fourth 

model, nucleoli of radius 1.1 m were added to the nucleus.  In the fifth model, both a thin 

membrane and nucleoli were added to the nucleus.  In the sixth model, index of refraction 

fluctuations were added to represent nuclear substructures as described in §6.3.  Each nucleus 

had a random spatial configuration of refractive indices that corresponded to five levels of index 

of refraction fluctuations.  The seventh model combined a thin membrane, nucleoli, and index of 

refraction fluctuations in the nucleus.  Cross-sections of the seven models are shown in Figure 

8.1 (a-g). 

All of the light scattering calculations used the DDA method.  The incident field was 

modeled as a plane wave with wavelength  = 1.0 m.  The cell was assumed to be immersed 

inside a host medium of water with index of refraction n=1.334.  The indices of refraction of 

each cell component were: ncytoplasm=1.3675, nnuc_mem=1.41, nnucleolus=1.44, and nmito=1.42.  The 

nucleus was modeled with five levels of index of refraction fluctuations ranging from 1.38 to 
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1.42 with an average nnucleus=1.4.  Each cell component had an imaginary index of refraction 

n=0.000015.  For each scatterer, the Mueller matrix elements were calculated for the same eight 

different incident electric field directions spanning all space listed in §7.1.  Projection images for 

the six polarization combinations described in §3.2 were obtained. 

Sets of  and   polarization images corresponding to the seven cell models are also 

shown in Figure 8.1.  The images are normalized to the maximum to emphasize the structure of 

the image and the values at the bottom of each image represent the minimum, maximum, and 

mean values of each image.  There are noticeable changes in the scattering patterns due to the 

nuclear structural changes.  The  images show a disruption of the vertical bands for models #6 

(f) and #7 (g) with index of refraction fluctuations.  In the   polarization images, the speckle 

size increases with the addition of nucleoli (d) and then again with the addition of index of 

refraction fluctuations (f), although the small speckles in the (a-c) can be considered to be 

calculation errors as the intensity should be zero due to the symmetry of the scatterer. 

Next, the effects of modeling the nucleus with increasing complexity in a cell model with 

surface fluctuation for both cell and nucleus surfaces were examined.  Cross-sections of the 

seven models and sets of  and   polarization images corresponding to the cell models are 

shown in Figure 8.2.  There are less dramatic visible changes in the scattering patterns.  The 

more obvious changes are those in the   polarization images due to the addition of index of 

refraction fluctuations (f). 

The nuclear structure effects in a cell model with mitochondria were also examined.  A 

diffuse distribution of spherical mitochondria of radius 2.5 m was added to the seven cell 

models with mitochondrial volume densities of 2.0, 5.0 and 8.0%.  Cross-sections of the seven 
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models with surface fluctuation and 8.0% mitochondrial volume density and sets of  and   

polarization images corresponding to the cell models are shown in Figure 8.3.  There is a visible 

change from (a) to (b), but this most likely due to the rearrangement of the mitochondria rather 

than the nucleus being placed off-center.  There are no other visible changes in the light 

scattering patterns.  

A Gabor analysis of the polarization images discussed above revealed measurable changes in 

the patterns.  Figure 8.4 (a) shows the analysis of the   polarization images with a Gabor filter 

with frequency of 0.08 pixels
-1

 and orientation of 45°.  Results are shown for eight cell models.  

Models 1-4 correspond to the first, second, sixth, and seventh spherical cell models described 

above, and models 5-8 represent the same models with surface fluctuation.  Analysis of the 

scattering images shows an increase in the Gabor energy due to addition of nuclear substructures 

in both the simple spherical cell model and the one with surface fluctuation.   

Figure 8.4 (b) shows the Gabor energy for the   polarization images for the same eight 

cell models with four options for mitochondrial volume density: 0% (models #1-8), 2.0% 

(models #9-16), 5.0% (models #17-24), and 8.0% (models #25-32).  The Gabor filter had a 

frequency of 0.04 pixels
-1

 and orientation of 90°.  In both the simple cell model and the one with 

surface fluctuation, there is a measureable increase in Gabor energy as a result of the increase in 

complexity of the nuclear model.  Figure 8.4 (b) also shows a measureable increase in Gabor 

energy as a result of the increase in mitochondrial volume density in the cell models.   
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Figure 8.1: (a-g) Cross sections of the seven smooth cell models with increasing nuclear 

complexity and their corresponding  and   polarization images.  The minimum, maximum, 

and mean intensity are shown on each image. 

(a) 

(d) 

(b) 

(e) 

(c) 

(f) (g) 
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Figure 8.2: (a-g) Cross sections of the seven cell models with surface fluctuation with increasing 

nuclear complexity and their  and   polarization images.  The minimum, maximum, and 

mean intensity are shown on each image. 

(a) 

(d) 

(b) 

(e) 

(c) 

(f) (g) 
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Figure 8.3: (a-g) Cross sections of the seven cell models with surface fluctuation and 

mitochondria with increasing nuclear complexity and their  and   polarization images.  The 

minimum, maximum, and mean intensity are shown on each image. 

(a) 

(d) 

(b) 

(e) 

(c) 

(f) (g) 
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Figure 8.4: Analysis with Gabor filters of polarization images for eight cell models depicted in 

the previous figure.  Gabor energy results for (a)   and (b)   polarization images.  In (b), 

models are shown with increasing mitochondrial volume density. 

(a) 

(b) 
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For a more in-depth look at the influence of mitochondria, the light scattering patterns from 

the cell models with a mitochondrial volume density of 0, 2.0%, 5.0%, and 8.0% presented 

above were compared to light scattering patterns from cell models with an equivalent 

homogeneous index of refraction for the cytoplasm.  The cell models and corresponding  and 

  polarization images are shown in Figure 8.5.  The images for the three cell models with an 

equivalent index in the cytoplasm are not shown because they appear identical to those from the 

model without mitochondria.  For the models with an increase in mitochondrial density, the 

texture has a similar pattern in all of the  images while the   images show visible 

differences in the number of speckles and organization of the speckles.   

For a quantitative analysis of the images, the scattering cross section for each cell model and 

the average intensity of each image was calculated.  The plots in Figure 8.6 show the (a) cross 

section and (b) the average intensity for the   image.  The scattering cross section, which 

provides an indication of the total scattering power of the particle as discussed in §3.3, does not 

differentiate between the models with and without mitochondria, but it does increase due to the 

increase in index of refraction of the cytoplasm.  The average intensity of the image, however, 

increases with the addition of mitochondria but remains constant with the increase in index of 

refraction of the cytoplasm. 

This study correlated changes in cell morphology to changes in the light scattering patterns 

through a visual inspection and quantitative analysis.  It showed the effects on the size and 

configuration of the speckles in the light scattering patterns of increasing the complexity of the 

nucleus in a smooth cell model, a model with surface fluctuation, and a model with 

mitochondria.  Although the light scattering patterns responded strongly to the nuclear 
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substructure changes in the smooth models, less dramatic changes were observed in the light 

scattering patterns from the models with surface fluctuation and mitochondria.  However, 

quantitative analysis revealed an increase in Gabor energy of the light scattering patterns due to 

the increased complexity of the nucleus model.  In addition, the study revealed that the light 

scattering patterns are very sensitive to the number of mitochondria in the cell and that the 

average intensity of the polarization images can provide an indication of mitochondrial volume 

density.  These results suggest that a complex nuclear structure and mitochondria should be 

included when modeling biological cells for light scattering simulations.   

 

 

Figure 8.5: (a-d) Cross sections of cell models with increasing mitochondrial density and their 

 and   polarization images.  The models have 0%, 2.0%, 5.0%, and 8.0% mitochondrial 

volume density, respectively. 

 

(a) (d) (b) (c) 
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Figure 8.6: Analysis of polarization images for the seven cell models showing the effect of 

increasing mitochondrial volume density. Results for (a) cross section and (b) the average 

intensity of the   polarization image. 

(a) 

(b) 



 

CHAPTER 9:  CLASSIFICATION OF CELLS BASED ON MORPHOLOGICAL 

PARAMETERS 

In this chapter, we extend our efforts on correlating light scattering patterns to cell morphology 

by classifying light scattering patterns according to various morphological characteristics of the 

cells using discriminant analysis.  To accommodate this study, a large set of cell models were 

created with different cell surface roughness, nuclear size, and mitochondrial distribution, 

volume density, size, and shape.  Light scattering patterns were obtained with ADDA and 

analyzed with a set of Gabor filters.  The results of this study show promise for classifying cells 

based on a number of morphological characteristics.  The following sections describe the 

methodology and results from the classification of the scattering patterns.  

9.1. Simulation methodology 

The cell models created for this study were allowed to vary slightly from one another in order to 

represent the variations in size, shape and optical properties inherent in cell populations.  This 

was achieved through modeling most parameters as random variables with normal distributions, 

whether or not the particular cell characteristics were a focus of the study. 

The cell and nucleus surfaces were modeled as ellipsoids with surface fluctuation.  The 

ellipsoidal shape, controlled by the aspect ratio (AR), the ratio of the major axis to the minor 

axis, was normally distributed with mean 1.13   0.0339 for the cell and 1.18   0.0354 for the 

nucleus.  These AR values are an average of the values derived from the four B-cells mentioned 

in §6.6.  The cell surface roughness was varied among the cell models to represent relatively 

smooth, normal, and rough cells.  For the cells with normal surface roughness, the parameters 

chosen for the Gaussian spheres were averages of the parameters derived from the four B-cells.  
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These parameters were 
min 2 , 

max 50 , 2.06  , and 0.058  .  The differing amounts of 

surface roughness for the relatively smooth and rough cells were achieved by using Gaussian 

spheres with different values of  , based on the roughness parameters given in Ref. [35] as 

mentioned in §2.2.  The values chosen for   were 0.022 and 0.078 for the smooth and rough 

surfaces, respectively.  The values chosen for the relative standard deviations multiplied by the 

average cell radius of 5.0 m yield surface roughness equal to 0.11, 0.29, and 0.39 m for the 

three cell surfaces.  The surface roughness of the nuclei was kept constant: the Gaussian sphere 

parameters were 2.53   and 0.064  , based on the parameters derived from the four B-cells.  

For each model, four different realizations of the Gaussian spheres were used for the cell and 

nuclei to provide variety while retaining the same statistical features in the shape. 

The cell size was modeled with a normal distribution.  The mean major axis size was 

calculated to yield an ellipsoidal volume of 524 m
 3

 (corresponding to the volume of a sphere 

with radius of 5.0 m) and the standard deviation was such that one standard deviation equaled 

3.0% of the volume of the ellipsoid, in order to allow the volume of the cell to vary by 

approximately  10%. 

Three nuclear sizes were modeled to represent small, medium, or large nuclei.  The nucleus-

to-cell volume fraction expressed as a percentage (N/C) was chosen to be normally distributed 

with mean of 30%, 40%, or 50%.  The standard deviation was such that one standard deviation 

equaled 2.5% of the N/C.  The nucleus was placed at a distance of 0.31 m from the center of the 

cell for cells that had a N/C of 0.30 and 0.40 but was placed in the center for cells that had a N/C 

of 0.50 in order to ensure that the nucleus fit inside the cell.  
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The nucleus was modeled with a membrane, nucleolus, and optical fluctuations as described 

in Chapter 6.  The nuclear membrane was approximately 0.1m thick.  The nucleolus was 

modeled as an ellipsoid with mean axis sizes of 0.6m   0.1m.  Each nucleus had a random 

spatial configuration of refractive indices that corresponds to five levels of index of refraction 

fluctuations.   

The mitochondria in the cell models were modeled with diffuse, peripheral, and perinuclear 

spatial distributions.  For the diffuse distribution, mitochondria were randomly placed in the 

cytoplasm.  For the peripheral distribution, 80.0% of mitochondria were randomly placed within 

0.4m of the cell periphery (zone 1), 10.0% between 0.4m to 0.6m (zone 2), 5.0% between 

0.6m to 0.8m (zone 3), and 5.0% between 0.8m to 1.2m (zone 4) of the cell periphery.  

The size of zone 1 was sometimes increased up to 0.5 m to accommodate large mitochondria 

and high volume densities.  The perinuclear distribution was created similarly to the peripheral 

distribution; it had the same proportions of mitochondria in each zone, but the respective 

distances were from the nucleus rather than the cell periphery.  With this model for the 

distribution, a cell with a peripheral distribution still had a few mitochondria near the nucleus, 

and vice versa.  

Three mitochondrial volume densities and two mitochondrial sizes and shapes were also 

modeled.  The mitochondria-to-cell volume fraction expressed as a percentage (M/C) was chosen 

to be normally distributed with mean of 2.0, 5.0, and 8.0%.  The standard deviation was such that 

one standard deviation equaled 5.0% of the M/C.  The sizes of the mitochondria were modeled 

with modified lognormal distributions rather than normal distributions, to restrict the sizes to 

either mostly small or mostly large and still allow some separation between the two groups.  The 
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lognormal distribution for the semi-major axis a of the small mitochondria,  ln 1.2,0.3N  , was 

stretched horizontally by 2.0 and translated on the x-axis by 0.2 m to allow the smallest 

mitochondria to have non-zero lengths.  The distribution for the large mitochondria 

 ln 1.2,0.3N   was stretched horizontally by 2.0, reflected across the y-axis, and then translated 

on the x-axis by 1.2 m to restrict a to be smaller than 0.6 m.  With these distributions for 

mostly small or mostly large mitochondria, the mean semi-major axes lengths were 0.26 and 

0.44m, respectively.  The shapes of the mitochondria were also modeled with modified 

lognormal distributions to represent two degrees of elongation.  For the less elongated 

mitochondria, the distribution  ln 1.2,1.21N   was translated by 1.0 on the x-axis, resulting in a 

mean AR of 1.6.  For the more elongated mitochondria, the distribution  ln 0.3,0.063N  was 

reflected across the y-axis and then translated on the x-axis by 5.0 resulting in a mean AR of 3.6.  

The probability density functions for the two mitochondrial sizes and shapes are shown in Figure 

9.1; the mean for each distribution is represented by a vertical line. 

 

 

Figure 9.1: Probability density functions used for the modeling of mitochondrial (a) shape and 

(b) size.  The mean for each distribution is represented by a vertical line. 

(b) (a) 
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Figure 9.2 presents some examples of the cell models used in this study.  Figure 9.2 (a-c) 

shows the cross sections of a cell model with a 2%, 5%, and 8% mitochondrial volume density, 

respectively, a relatively smooth surface, a 50% nucleus, and a diffuse mitochondrial distribution 

with small and less elongated mitochondria.  Figure 9.2 (d-f) shows a model a diffuse, 

peripheral, and perinuclear distribution, respectively, a rough surface, a 30% nucleus, 5% 

volume density, and large and more elongated mitochondria.   

 

Figure 9.2: Examples of cell models used in simulations.  (a,b,c) M/C = 2%, 5%, and 8%, 

respectively, surface roughness=0.11 m, N/C = 50%, diffuse distribution, a=0.26m, and 

AR=1.6. (d,e,f) Diffuse, peripheral, and perinuclear mitochondrial distributions, respectively, 

surface roughness=0.39 m, N/C=30%, M/C=5%, a=0.44m, and AR=3.6. 

 

In all, with three choices for each of the surface roughness, nuclear size, mitochondrial 

distribution and volume density, and two choices for each of the mitochondrial sizes and shapes, 

there were 324 possible cell model combinations.  However, due to space limitations in the 

(b) (a) (c) 

(d) (e) (f) 
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peripheral and perinuclear distributions when a large nucleus was modeled, only small 

mitochondria were modeled for these distributions combined with this nuclear size.  Also, again 

due to space limitations, the rough cell surfaces were only modeled for cells with small and 

medium nuclei.  These limitations reduced the number of cell models to 264.  As mentioned 

above, four Gaussian sphere realizations were used for each cell model; thus, there were a total 

of 1056 distinct cell models.   

For the light scattering simulations using ADDA, the incident field was modeled as a plane 

wave with wavelength  = 1.0m.  The cell was assumed to be in a host medium of water with 

index of refraction n=1.334.  The indices of refraction of each cell component were: 

ncytoplasm=1.3675, nnuc_mem=1.41, nnucleolus=1.44, and nmito=1.42.  The nucleus was modeled with 

five levels of index of refraction fluctuations ranging from 1.38 to 1.42 with an average 

nnucleus=1.4.  Each cell component had an imaginary index of refraction n=0.000015.   

For each scatterer, the Mueller matrix elements were calculated for twenty-four different 

incident electric field directions.  The set of twenty-four incident angles used is listed in Table 

9.1.  

 

Table 9.1. Set of twenty-four incident angles for electric field used in simulations 

i (°) i (°) i (°) i (°) i (°) i (°) i (°) i (°) 

28.4 13.7 127.4 8.1 132.0 171.3 32.9 168.1 

40.2 236.7 77.5 326.4 147.0 277.6 85.7 212.8 

45.0 135.0 68.3 32.6 146.7 65.5 94.6 149.9 

72.0 306.5 127.7 285.0 95.5 230.2 49.9 271.2 

77.5 70.2 111.3 80.3 95.2 112.8 66.7 91.4 

88.3 187.9 14.1 325.7 111.5 351.5 147.5 194.7 
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Each of the four realizations for each cell model used a different subset of six orientations 

from the set of twenty-four orientations presented.  Simulating the light scattering from our cell 

models with twenty-four different incident electric field directions allowed a more realistic 

representation of cell populations by allowing for differences in cell orientations and also 

providing an adequate number of samples per cell model for statistical significance when 

performing discriminant analysis. 

In flow cytometry, a single detector is usually placed at the side scattering angle and 

scattering information in all other directions is lost.  Ideally, flow cytometers would contain 

detectors in directions spanning all space to capture as much 2D scattering information as 

possible.  In this study, polarization scattering patterns were obtained by projecting each Mueller 

matrix element combination described in §3.2 onto planes 500 m away in the side angle (center 

location of plane at 90   and 90  ) and acute angle ( 45   and 90  ) directions.  The 

half angle subtended by the detector at the lens was approximately 20.0° for the side and acute 

angle planes.  The 
11S  Mueller matrix element was projected in the forward plane with 

1.0 5.0   ; this range was chosen to account for the beam-stop present in the experimental 

setup to prevent the incident light from reaching the detector.  The total intensity was calculated 

for the forward plane.  A schematic is shown in Figure 9.3. 
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Figure 9.3: Projection image schematic for light scattering simulations. The Mueller matrix 

elements are projected onto a plane 500 mm away in the side angle ( 90   and 90  ) and 

acute angle       ( 45   and 90  )  directions. The total forward intensity is calculated for the 

forward plane. 

 

The projection images for the six polarization combinations for the side and 45° directions 

were each analyzed with a set of Gabor filters.  Based on the characteristics of the images, four 

frequencies (0.02, 0.04, 0.08, and 0.16 pixel
-1

) and four orientations evenly spaced from 0° to 

=45° 

=0° 

=90° 
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135° were chosen, producing a set of 4x4 Gabor filters.  The size of the filter was set to be the 

size of the image, 101x101 pixels.  The arithmetic mean of each Gabor-filtered image was 

computed.  The analysis of each projection image with Gabor filters yielded a 16-element feature 

vector for each image.  Since four projection images (two incident polarizations for each of the 

side and 45° plane) could be used simultaneously for each cell model, each cell model was 

represented by a 65-element feature vector, including one element for the forward intensity 

calculation. 

9.2. Results and discussion 

Discriminant analysis was performed in order to differentiate between the groups for each cell 

characteristic.  There were a total of 6336 cell models for each analysis.  The number of cell 

models in the groups for each cell characteristic is listed in Table 9.2.  The assumptions of DFA 

were tested.  Examination of the variables with histograms of frequency distributions indicated 

that the variables were either normally distributed or slightly skewed.  It was assumed that the 

large sample sizes made the DFA sufficiently robust that moderate departure from normality 

could be ignored.  Box’s M test was found to be significant (p<0.05), violating the assumption of 

homogeneity of covariance matrices.  A second analysis was run using the separate-groups 

covariance matrix.  The classification results for both analyses were all within 1%; thus, the 

results using the pooled covariance matrix were interpreted in the discussion below. 

A stepwise analysis was used in determining the LDFs in order to eliminate redundant 

variables.  In this procedure, variables were added to the LDFs one at a time using the method of 

minimizing Wilk’s lambda.  Variables were added to the model if the significance level of its F-

ratio value was greater than 0.05 and they were removed if it was less than 0.10.  For each cell 
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characteristic grouping, classification accuracies and cross-validated classification accuracies 

were obtained.   

As a check on the classification accuracy values generated by discriminant analysis, we 

applied each model generated by discriminant analysis to a different data set that was not part of 

the training sample.  The cell models used for the reclassification were similar to the models in 

the training sample except for the following differences: for the mitochondria spatial 

distributions, the mitochondria were slightly more spread out in the peripheral and perinuclear 

distributions; in each cell model, the AR for the mitochondrial shapes was fixed to 2.0 or 3.0; 

and two mitochondrial sizes were modeled with normal distributions with semimajor axis means 

of 0.2 and 0.5 m and standard deviation equal to 2.5% of the respective mean.  The number of 

cell models reclassified for each cell characteristic is also listed in Table 9.2.  The scoring wizard 

in SPSS was used to generate the predicted value for the outcome of interest.   
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Table 9.2.  Summary of number of cell models and groupings  

Cell characteristic Number of cell models 

in training set 

Number of cell models 

reclassified 

Cell surface roughness (m)   

 0.11 (smooth) 2304 72 

 0.29 (normal) 2304 2280 

 0.39 (rough) 1728 72 

Nuclear size (%)   

 30.0 (small) 2592 336 

 40.0 (medium) 2592 2016 

 50.0 (large) 1152 72 

Mitochondrial distribution   

 Diffuse 2304 1080 

 Peripheral 2016 672 

 Perinuclear 2016 672 

Mitochondrial volume density (%)   

 2.0 2112 1080 

 5.0 2112 672 

 8.0 2112 672 

Mitochondrial size a (m)   

 0.26 (small) 3456 648 

 0.44 (large) 2880 216 

Mitochondrial shape AR   

 1.6 (less elongated) 3168 1176 

 3.6 (more elongated) 3168 624 

 

 

In the results that follow, we present the cross-validated classification accuracies for the 

training sample, which were all within 1.0% of the classification accuracies.  The cross-validated 

classification accuracies for the various cell parameters were very similar for incident linear 

polarizations parallel, perpendicular, or at a 45° angle to the scattering plane.  Thus, we examine 

only the results that use the incident perpendicular polarization since they were slightly better 

overall.  Results for incident linear polarizations parallel and at a 45° angle to the scattering 

plane are presented in Tables B1 and B2 in Appendix B.   
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Figures 9.4-9.8 present the discriminant analysis classification results for cell surface 

roughness, nuclear size, and mitochondrial distributions, volume densities, sizes, and shapes, 

respectively, for the training sample (a) and the test sample (b).  As mentioned above, scattering 

images were obtained and analyzed for the side, 45°, and forward (fwd) scattering planes.  For 

the training sample, the results presented used six different combinations of the scattering planes 

(side/45°/fwd, side/45°, side/fwd, side, 45°/fwd, and 45°) in order to show the capabilities of the 

method depending on how much information is available from each scattering plane.  For the test 

set, results are shown for the side/45°/fwd and side scattering planes.  For the training sample, 

the classification accuracies presented are averaged for each grouping of the cell characteristic, 

while for the test set, the classification accuracies for reclassifying cell models into each group 

are shown.  For the four cell characteristics that have three groupings, i.e., the cell surface 

roughness, nuclear size, and mitochondrial distributions and volume densities, all possible 

grouping combinations are presented.  For example, for the cell surface roughness, there are 

results for roughness equal to 0.11/0.29/0.39m, 0.11/0.29m, 0.29/0.39m, and 

0.11/0.39m.  The data labels above the bars are the percentages of correctly-classified subjects 

and the horizontal line at 50% classification accuracy illustrates the baseline accuracy for two-

group classification. 

Figure 9.4 compares the classification results for the various groupings of the cell surface 

roughness.  As shown in Figure 9.4(a), there is a decrease in performance when fewer planes are 

used.  In this case, the 45° plane provides slightly better results than the side plane.  The 

classification accuracy is over 70% for all groupings when both the side and 45° planes are used 

in the analysis, and it is over 75% regardless of the number of planes used when differentiating 

between roughness equal to 0.11/0.29m and 0.11/0.39m.  The results suggest that cells that 
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are relatively smooth can successfully be separated from cells that have either average or high 

levels of surface roughness.  The classification results for the individual groups in Figure 9.4(b) 

support this finding.  Reclassification into two groups of smooth and non-smooth cells 

(roughness values of 0.11/0.29m and 0.11/0.39m) is over 70% and the reclassification of 

relatively smooth cells ranges from 81-100% regardless of the number of groups in the 

classification.   

Figure 9.5 presents the classification results for the nuclear size.  In Figure 9.5(a), it is 

evident that the forward plane helps to distinguish between the groups as the results that include 

the forward plane are consistently higher than those without the forward plane.  For the two-

group classifications, the results with the forward plane are all above 70%.  The results for the 

side and 45° planes are comparable.  Like in the previous figure, the results increase by over 

20% when only classifying between the extremes of the three groups (N/C= 30% and 50%) 

rather than classifying three sizes of the nucleus.  The results in Figure 9.5(b) for the test set are 

very poor for reclassifying both the medium and large nuclear sizes.  A closer look at the data 

(not shown) revealed that the nuclear size was usually reclassified one size smaller.  For 

example, in the 3-group classification, there was a 98% chance that the medium nucleus was 

reclassified as either small or medium using the side/45°/fwd scattering planes, compared to a 

28% chance that it was reclassified as medium.  There was a 78% chance that the large nucleus 

was reclassified as medium or large rather than an 8% chance that it was reclassified as large.  

The results of mitochondrial distribution classification are shown in Figure 9.6.  Like the 

results for the cell surface roughness, the inclusion of all planes produces better classification 

accuracies and the 45° plane performs better than the side plane, as shown in Figure 9.6(a).  The 

classification results are higher for distinguishing between a peripheral and perinuclear 
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distribution, since in these two groups the mitochondria have more separation between them.  

Again, the classification of these two outermost groups increases the performance by over 20% 

compared to the classification of the three groups.  The results also suggest that the peripheral 

distribution is easier to classify since the results for diffuse/peripheral are higher than for 

diffuse/perinuclear.  This implies that the mitochondria have a more significant effect on the 

light scattering pattern when they are located near the cell periphery.  The results for the 

reclassification of cell models in the test set in Figure 9.6(b) follow the same trend as those in 

(a).  The performance is poor when attempting to classify the three mitochondrial distributions 

but it increases for the two-group classification, especially for the peripheral/perinuclear 

grouping. 

Figure 9.7 presents the classification results for mitochondrial volume density.  In this case, 

the results from the side plane are higher than those from the 45° plane, as shown in Figure 9.7 

(a).  Again, the results increase significantly when only mitochondria with M/C=2.0 and 8.0% 

are classified rather than all three volume densities.  Also, the classification of M/C = 2.0/5.0% is 

significantly higher than that of M/C=5.0/8.0%.  This could be due to the larger separation 

between the 2.0 and 5.0 % groups, since these groups have smaller variances than the 8.0% 

group.  Overall, the model is effective in distinguishing between mitochondrial volume density, 

with a classification accuracy over 75% when all scattering planes are used in the analysis 

regardless of the grouping.  The results in Figure 9.7 (b) are consistent with those in Figure 9.7  

(a).  Cell models are reclassified with over 85% accuracy for the M/C = 2.0/5.0% and M/C = 

2.0/8.0% and the inclusion of all the planes produces better results. 

The classification results for both the shape and size of the mitochondria are shown in Figure 

9.8.  Both of these cell characteristics have only two groupings; less (AR=1.6) or more (AR=3.6) 
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elongated for the shape, and small (a=.26m) or large (a=0.44m) mitochondria for the size.  

The model does a poor job of classifying mitochondrial shape; regardless of the number of 

planes, the accuracy for both sets of data ranges from 42-63%.  However, the model excels at 

classifying mitochondrial size; even with only one scattering plane used for the analysis, the 

classification accuracy is above 75% and 80%, respectively, for the training and test sets.   

In summary, classification of cell models in the sample set and reclassification of cell models 

based on the models generated from the training set was highly successful for the cell surface 

roughness grouping of 0.11/0.39m, the mitochondrial volume density groupings of 

M/C=2.0/5.0% and M/C=2.0,8.0%, and mitochondrial size grouping: over 80% of the cell 

models were correctly classified into their original categories using either all the scattering 

planes or the side scattering plane.  The average classification accuracy for each possible 

grouping combination for each cell characteristics is presented in Table 9.3.  Results are shown 

for the training set and the test set using data from all scattering planes or the side scattering 

plane.  Overall, the reclassification of the test set was comparable to the classification of the 

training set, with the exception of the reclassification of the nuclear size.  Overall, discriminant 

analysis performed well using all of the scattering planes in classifying all the cell characteristics 

except for the mitochondrial shape.  

 

 

 

 

 

 



 

 

 

Figure 9.4: Classification results from discriminant analysis for cell surface roughness for (a) the 

training set and (b) the test set. 

(a) 

(b) 
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Figure 9.5: Classification results from discriminant analysis for nuclear size for (a) the training 

set and (b) the test set. 

(a) 

(b) 
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Figure 9.6: Classification results from discriminant analysis for mitochondrial distribution for (a) 

the training set and (b) the test set. 

 

(a) 

(b) 
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Figure 9.7: Classification results from discriminant analysis for mitochondrial volume density for 

(a) the training set and (b) the test set. 

(a) 

(b) 
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Figure 9.8: Classification results from discriminant analysis for mitochondrial shape and size for 

(a) the training set and (b) the test set. 

(a) 

(b) 



111 

 

Table 9.3.  Classification accuracy for training set and test set for various cell characteristics 

Cell characteristic All scattering planes Side scattering plane 

 Training 

set 

Test set Training 

set 

Test set 

Cell surface roughness (m)     

 0.11/0.29/0.39 0.72 0.67 0.61 0.58 

 0.11/0.29 0.85 0.84 0.76 0.83 

 0.29/0.39 0.77 0.71 0.68 0.60 

 0.11/0.39 0.94 0.98 0.85 0.90 

Nuclear size (%)     

 30.0/40.0/50.0 0.71 0.44 0.49 0.36 

 30.0/40.0 0.77 0.63 0.59 0.57 

 40.0/50.0 0.82 0.54 0.72 0.46 

 30.0/50.0 0.94 0.66 0.77 0.47 

Mitochondrial distribution     

 Diffuse/Peripheral/Perinuclear 0.67 0.63 0.56 0.49 

 Diffuse/Peripheral 0.81 0.74 0.72 0.64 

 Peripheral/Perinuclear 0.88 0.84 0.79 0.76 

 Diffuse/Perinuclear 0.73 0.72 0.65 0.61 

Mitochondrial volume density (%)     

 2.0/5.0/8.0 0.78 0.84 0.72 0.75 

 2.0/5.0 0.89 0.93 0.85 0.88 

 5.0/8.0 0.79 0.82 0.74 0.75 

 2.0/8.0 0.96 0.98 0.93 0.96 

Mitochondrial size a (m)     

 0.26/0.44 (training) 

0.20/0.50 (test) 

0.93 0.99 0.8 0.86 

Mitochondrial shape AR     

 1.6/3.6 (training) 

2.0/3.0 (test) 

0.63 0.50 0.55 0.44 

 



 

CHAPTER 10: CONCLUSION 

This research project investigated the relationship between the light scattering patterns from cells 

and their morphology.  Through realistic analytical cell modeling and analysis of light scattering 

patterns with various techniques, this study demonstrated the potential of the light scattering 

signal as a tool for differentiating cells based on particular morphological characteristics.   

The procedure presented to create analytical cell models used structural information 

extracted from confocal microscopic images of biological cells.  The shapes of the cell and 

nucleus membranes were constructed by combining an ellipsoidal base shape with a Gaussian 

random sphere model for the surface fluctuation, and nuclear substructures and mitochondria 

populations with specific densities, distributions, sizes, and shapes were also added to the cell 

model.  The procedure to extract the surface fluctuation was validated through the generation of 

a large set of Gaussian spheres and the successful recovery of the Gaussian sphere parameters 

within 10% of the original parameters.  In addition, light scattering patterns obtained through 

simulation from the cell models and experimentally from lymphocytes showed similar 

characteristics such as speckle size and configuration, indicating strong similarities between the 

analytical models and biological cells.  The analytical cell models allowed systematic variations 

in cell structural features in a controlled manner and made the systematic study of the 

relationship between light scattering patterns and cell morphology possible.   

To determine the best way to extract cell morphology information from the light scattering 

patterns, methods to analyze the light scattering patterns were compared for their ability to 

distinguish between cell models with different shapes and mitochondrial characteristics.  It was 

found that the analysis of the angular distribution of the scattered light combined with Gabor 

filter analysis were most helpful in differentiating between the cell characteristics.  Additionally, 
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it was shown that different scattering angle ranges from the angular distribution of the scattered 

light provided information about different parts of the cell, such as the main cell structure and the 

mitochondrial spatial distribution, volume density, size and shape.  In particular, the light 

scattering intensity in the scattering angle range of 25° - 45° responded to changes in the surface 

fluctuation of the cell and the range of 90° - 110° was well suited for characterization of 

mitochondrial density and nuclear size.  Gabor analysis of the diffraction images produced from 

side angle scattering suggested that Gabor filters could distinguish between different 

mitochondrial spatial distributions.  This part of the study identified relevant scattering angle 

ranges and demonstrated the effectiveness of different analysis methods for analyzing light 

scattering patterns from realistic cell models.  

The study of the correlation between changes in cell morphology to changes in the light 

scattering patterns was achieved through a visual inspection and quantitative analysis of the 

scattering patterns.  By systematically increasing the complexity of nuclear substructures and 

modeling the cells with surface fluctuation and mitochondria, we were able to relate the changes 

in the scattering patterns to variations in particular cell characteristics.  In particular, there was a 

noticeable change in the size and formation of the speckles in the light scattering patterns due to 

increasing the complexity of the nucleus in cell models with smooth surfaces and introducing 

mitochondria in cell models with surface fluctuation.  Quantitative analysis revealed an increase 

in Gabor energy of the light scattering patterns for high filter frequencies due to the increased 

complexity of the nucleus model in all cell models.  Results also indicated that the average 

intensity of the polarization images can provide an indication of mitochondrial volume density.  

These results suggested that a complex nuclear structure and mitochondria should be included 

when modeling biological cells for light scattering simulations.   
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The last part of this project examined the capabilities of discriminant analysis and Gabor 

filters in classifying light scattering patterns according to various cell morphological 

characteristics.  Cell models were created with different surface roughness, nuclear size, and 

mitochondrial spatial distribution, volume density, size, and shape and sets of polarization 

images for different incident field directions were obtained in the side and 45° scattering angle 

directions.  With the light scattering data from the forward, 45°, and side planes combined for the 

discriminant analysis, polarization images from realistic cell models with different cellular 

characteristics were classified with over 87% accuracy.  The best classification results were 

obtained for discriminating between cell surface roughness and mitochondrial size, while the 

only parameter that was not classified successfully was the mitochondrial shape.  The study 

showed that regardless of the polarization of the incident field, a Gabor filter analysis of 

polarization images from the side and 45° scattering angle combined with the forward light 

scattering intensity provided variables with significant discriminatory power in a discriminant 

analysis to classify the cells according to the different cell characteristics.   

The methods proposed in this study for the cell modeling and light scattering pattern analysis 

have proved useful in elucidating more specific relationships between the cell characteristics and 

the light scattering patterns.  It is expected that these methods could be utilized in flow cytometry 

to sort cells according to the desired characteristics.  For example, experimentalists could use the 

results of this study to decide on the location of the detector(s) that would be most useful to them 

depending on the information desired from the cell.  If one is studying the mitochondrial 

distribution in cells due to its association with cancer and only one detector is available, for 

instance, results of this study suggest placing the detector at the 45° scattering angle to obtain the 

most relevant information.    



115 

 

Additional work is suggested for improving the realistic cell model and the classification of 

cells based on morphological characteristics.  Further directions for realistic cell modeling 

include modeling additional structures in the cytoplasm, such as the Golgi complex and the 

endoplasmic reticulum.  The procedure presented in this work can be directly applied to model 

these substructures provided that cross sectional images are available.  Also, it would be very 

helpful to relate the findings in this study to experimental results.  Current work is underway 

comparing light scattering images from biological cells obtained through experiment to those 

simulated from the analytic cell models presented in this study.  In addition, the classification 

study can be expanded.  For each cell characteristic, two or three groups were created based on 

the information available in the literature relating these characteristics to the cell physiological 

condition.  Thus, the discriminant models could only be used to classify cell models that 

belonged to the groups rather than any cell model from the cell population.  For a more complete 

study, it is suggested that a number of cell models in the hundreds of thousands be created to 

encompass a wider variety of cells.  As the relationship between cell morphology and certain 

diseases becomes clearer, the methods presented in this work may have wide possibilities for 

clinical applications.   
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APPENDIX A: REPRESENTATION OF AN ELLIPSOID WITH ARBITRARY 

ORIENTATION IN SPHERICAL COORDINATES  

 

This appendix provides the equation for an ellipsoid that is used to model the base shape of the 

cell models.  It was derived as described in §6.1.   

 

 



 

APPENDIX B: CLASSIFICATION RESULTS FOR INCIDENT LINEAR POLARIZATIONS 

PARALLEL AND AT A 45° ANGLE TO THE SCATTERING PLANE  

 

This appendix provides the classification results for the polarization images mentioned in §9.2. 

 

Table B1.  Classification accuracy for various cell characteristics for incident linear polarization 

parallel to the scattering plane 

 

Cell characteristic Scattering planes 

 
 

Side/ 

45°/ 

fwd 

Side/ 

45° 

Side/ 

fwd 
Side 

45°/ 

fwd 
45° 

Cell surface roughness (m)       

 0.11/0.29/0.39 0.74 0.71 0.62 0.61 0.68 0.65 

 0.11/0.29 0.84 0.84 0.76 0.76 0.79 0.78 

 0.29/0.39 0.79 0.77 0.69 0.67 0.75 0.71 

 0.11/0.39 0.96 0.94 0.88 0.87 0.91 0.89 

Nuclear size (N/C %)       

 30.0/40.0/50.0 0.69 0.55 0.66 0.49 0.66 0.52 

 30.0/40.0 0.77 0.65 0.75 0.58 0.74 0.64 

 40.0/50.0 0.81 0.74 0.79 0.72 0.78 0.70 

 30.0/50.0 0.93 0.79 0.91 0.74 0.91 0.75 

Mitochondrial distribution       

 Diffuse/Peripheral/Perinuclear 0.66 0.64 0.55 0.54 0.64 0.61 

 Diffuse/Peripheral 0.80 0.78 0.73 0.71 0.78 0.74 

 Peripheral/Perinuclear 0.87 0.86 0.78 0.78 0.85 0.82 

 Diffuse/Perinuclear 0.71 0.70 0.64 0.64 0.69 0.70 

Mitochondrial volume density (M/C %)       

 2.0/5.0/8.0 0.76 0.76 0.71 0.71 0.63 0.63 

 2.0/5.0 0.88 0.88 0.84 0.84 0.79 0.79 

 5.0/8.0 0.77 0.77 0.74 0.73 0.69 0.67 

 2.0/8.0 0.94 0.94 0.93 0.93 0.87 0.86 

Mitochondrial size a (m)       

 
0.26/0.44 0.89 0.89 0.73 0.73 0.79 0.79 

Mitochondrial shape AR       

 
1.6/3.6 0.63 0.61 0.54 0.54 0.60 0.60 
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Table B2. Classification accuracy for various cell characteristics for incident linear polarization 

at a 45° angle to the scattering plane 

 

Cell characteristic Scattering planes 

 
 

Side/ 

45°/ 

fwd 

Side/ 

45° 

Side/ 

fwd 
Side 

45°/ 

fwd 
45° 

Cell surface roughness (m)       

 0.11/0.29/0.39 0.74 0.71 0.62 0.61 0.68 0.65 

 0.11/0.29 0.84 0.84 0.76 0.76 0.80 0.78 

 0.29/0.39 0.79 0.76 0.69 0.68 0.75 0.71 

 0.11/0.39 0.96 0.94 0.88 0.86 0.91 0.89 

Nuclear size (N/C %)       

 30.0/40.0/50.0 0.70 0.55 0.67 0.49 0.66 0.52 

 30.0/40.0 0.77 0.65 0.74 0.58 0.74 0.64 

 40.0/50.0 0.81 0.74 0.79 0.72 0.78 0.70 

 30.0/50.0 0.93 0.79 0.91 0.74 0.91 0.75 

Mitochondrial distribution       

 Diffuse/Peripheral/Perinuclear 0.66 0.64 0.56 0.54 0.64 0.61 

 Diffuse/Peripheral 0.80 0.78 0.73 0.71 0.78 0.74 

 Peripheral/Perinuclear 0.87 0.86 0.78 0.77 0.85 0.82 

 Diffuse/Perinuclear 0.71 0.71 0.64 0.64 0.69 0.70 

Mitochondrial volume density (M/C %)       

 2.0/5.0/8.0 0.76 0.76 0.71 0.71 0.63 0.63 

 2.0/5.0 0.88 0.88 0.85 0.85 0.79 0.79 

 5.0/8.0 0.77 0.77 0.74 0.73 0.69 0.67 

 2.0/8.0 0.95 0.95 0.93 0.93 0.87 0.86 

Mitochondrial size a (m)       

 
0.26/0.44 0.89 0.89 0.73 0.73 0.79 0.79 

Mitochondrial shape AR       

 
1.6/3.6 0.63 0.62 0.55 0.54 0.60 0.60 
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